Issue 22, 2022

Interlayer excitons in MoSe2/2D perovskite hybrid heterostructures – the interplay between charge and energy transfer

Abstract

van der Waals crystals have opened a new and exciting chapter in heterostructure research, removing the lattice matching constraint characteristics of epitaxial semiconductors. They provide unprecedented flexibility for heterostructure design. Combining two-dimensional (2D) perovskites with other 2D materials, in particular transition metal dichalcogenides (TMDs), has recently emerged as an intriguing way to design hybrid opto-electronic devices. However, the excitation transfer mechanism between the layers (charge or energy transfer) remains to be elucidated. Here, we investigate PEA2PbI4/MoSe2 and (BA)2PbI4/MoSe2 heterostructures by combining optical spectroscopy and density functional theory (DFT) calculations. We show that band alignment facilitates charge transfer. Namely, holes are transferred from TMDs to 2D perovskites, while the electron transfer is blocked, resulting in the formation of interlayer excitons. Moreover, we show that the energy transfer mechanism can be turned on by an appropriate alignment of the excitonic states, providing a rule of thumb for the deterministic control of the excitation transfer mechanism in TMD/2D-perovskite heterostructures.

Graphical abstract: Interlayer excitons in MoSe2/2D perovskite hybrid heterostructures – the interplay between charge and energy transfer

Supplementary files

Article information

Article type
Paper
Submitted
14 Feb 2022
Accepted
28 Apr 2022
First published
28 Apr 2022

Nanoscale, 2022,14, 8085-8095

Interlayer excitons in MoSe2/2D perovskite hybrid heterostructures – the interplay between charge and energy transfer

M. Karpińska, J. Jasiński, R. Kempt, J. D. Ziegler, H. Sansom, T. Taniguchi, K. Watanabe, H. J. Snaith, A. Surrente, M. Dyksik, D. K. Maude, Ł. Kłopotowski, A. Chernikov, A. Kuc, M. Baranowski and P. Plochocka, Nanoscale, 2022, 14, 8085 DOI: 10.1039/D2NR00877G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements