Issue 17, 2022

On-chip high ion sensitivity electrochromic nanophotonic light modulator

Abstract

Since the discovery of electrochromism, the prospect of employing various electrochromic materials for smart window glass, variable reflectivity mirrors, and large-area displays has been the main drive for such an intriguing phenomenon. However, with advances in nanofabrication and the emergence of improved electrochromic materials offering reversible large changes in dielectric properties upon electrically induced redox reactions, the application strategies are starting to encompass the field of nanophotonics and nanoplasmonics. Herein, a novel strategy is proposed and demonstrated for offering both ultrahigh light modulation depth and high sensitivity ion detection in a single nanophotonic waveguiding platform. By using WO3 to ionically-drive dynamic light control via modulating the refractive index and the losses within the waveguide at ±1.5 V, ultrahigh optical modulation depth of 106, rapid response speed of <0.56 s, long cyclic life, and very sensitive Na+ ion detection ability in 1 mM–1 M concentration, are achieved within a volume of a few μm3. It is envisioned that our introduction of such a multifunctional electrochromic nanophotonic waveguide platform will stimulate and promote further efforts toward fundamental research on technologically promising on-chip integrated next-generation nanophotonic and nanoplasmonic devices for various niche applications.

Graphical abstract: On-chip high ion sensitivity electrochromic nanophotonic light modulator

Supplementary files

Article information

Article type
Paper
Submitted
03 Feb 2022
Accepted
08 Apr 2022
First published
08 Apr 2022

Nanoscale, 2022,14, 6526-6534

On-chip high ion sensitivity electrochromic nanophotonic light modulator

E. Hopmann, B. Y. Shahriar and A. Y. Elezzabi, Nanoscale, 2022, 14, 6526 DOI: 10.1039/D2NR00646D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements