Issue 17, 2022

Cost-effective carbon fiber precursor selections of polyacrylonitrile-derived blend polymers: carbonization chemistry and structural characterizations

Abstract

Blending polyacrylonitrile (PAN) with plastic wastes and bio-based polymers provides a convenient and inexpensive method to realize cost-effective carbon fiber (CF) precursors. In this work, PAN-based blend precursors are investigated using ReaxFF reactive molecular dynamics simulations with respect to the formation of all-carbon rings, the evolutions of oxygen-containing and nitrogen-containing species, and the migration of carbon atoms to form turbostratic graphene. From these simulations, we identify that PAN/cellulose (CL) blend manifests the highest carbon yield and the most substantial all-carbon ring formation. This ReaxFF-based finding is confirmed by Raman and TEM experiments indicating high crystallinity for PAN/CL-derived blend CFs. We trace the pathway of gasification and carbonization of PAN/CL to elaborate the mechanism of the formation of all-carbon ring networks. We discover that the acetals of CL can catalyze the cyclization of the blend precursor, allowing for the search for CL derivatives or the other kinds of bio-based polymers with similar functionalities as alternative blends. In addition, we examine the structural characteristics using the carbon–carbon (C–C) radial distribution functions, C–C bond length distributions, and sp2 C atom ratios for the four representative precursors, i.e., PAN, oxidized PAN, PAN/nylon 6,6, and PAN/CL. Our simulation results show the most extensive all-carbon ring cluster and graphitic structure growths for PAN/CL. Therefore, we propose PAN/CL as a cost-effective alternative CF precursor, since (a) CL is naturally abundant and eco-friendly for production, (b) the blend precursor PAN/CL does not require oxidation treatment, (c) PAN/CL has a high carbon yield with substantial all-carbon ring formation, and (d) PAN/CL based CFs potentially provide a mechanical property enhancement.

Graphical abstract: Cost-effective carbon fiber precursor selections of polyacrylonitrile-derived blend polymers: carbonization chemistry and structural characterizations

Supplementary files

Article information

Article type
Paper
Submitted
12 Jan 2022
Accepted
01 Apr 2022
First published
04 Apr 2022

Nanoscale, 2022,14, 6357-6372

Author version available

Cost-effective carbon fiber precursor selections of polyacrylonitrile-derived blend polymers: carbonization chemistry and structural characterizations

Q. Mao, S. Rajabpour, M. K. Talkhoncheh, J. Zhu, M. Kowalik and A. C. T. van Duin, Nanoscale, 2022, 14, 6357 DOI: 10.1039/D2NR00203E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements