Issue 5, 2022

Metallo-boranes: a class of unconventional superhalogens defying electron counting rules

Abstract

Superhalogens are a class of highly electronegative atomic clusters whose electron affinities exceed those of halogens. Due to their potential for promoting unusual reactions and role as weakly coordinating anions as well as building blocks of bulk materials, there has been considerable interest in their design and synthesis. Conventional superhalogens are composed of a metal atom surrounded by halogen atoms. Their large electron affinities are due to the fact that the added electron is distributed over all the halogen atoms, reducing electron–electron repulsion. Here, using density functional theory with a hybrid exchange–correlation functional, we show that a new class of superhalogens can be developed by doping closo-boranes (e.g., B12H12) with selected metal atoms such as Zn and Al as well as by replacing a B atom with Be or C. Strikingly, these clusters defy electron counting rules. For example, according to the Wade–Mingos rule, Zn(B12H12) and Al(BeB11H12) are closed-shell systems that should be chemically inert and, hence, should have very small electron affinities. Similarly, Zn(B12H11), Al(B12H12), and Zn(CB11H12), with one electron more than needed for electronic shell closure, should behave like superalkalis. Yet, all these clusters are superhalogens. This unexpected behavior originates from an entirely different mechanism where the added electron resides on the doped metal atom that is positively charged due to electron transfer.

Graphical abstract: Metallo-boranes: a class of unconventional superhalogens defying electron counting rules

Associated articles

Supplementary files

Article information

Article type
Paper
Submitted
19 Oct 2021
Accepted
22 Dec 2021
First published
23 Dec 2021
This article is Open Access
Creative Commons BY-NC license

Nanoscale, 2022,14, 1767-1778

Metallo-boranes: a class of unconventional superhalogens defying electron counting rules

H. Banjade, H. Fang and P. Jena, Nanoscale, 2022, 14, 1767 DOI: 10.1039/D1NR06929B

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements