Issue 13, 2022

Single molecule iSCAT imaging reveals a fast, energy efficient search mode for the DNA repair protein UvrA

Abstract

Exposure to UV radiation results in numerous DNA lesions, which threaten genome integrity. The nucleotide excision DNA repair pathway detects and repairs a range of such UV-induced DNA lesions. In bacteria, initial damage detection and verification is carried out by two proteins: UvrA and UvrB. Despite decades of study, the process of how these proteins locate damage remains unclear. Here we use high-speed interferometric scattering (iSCAT) microscopy, in combination with a surface-bound-DNA assay, to investigate early damage detection by UvrA. We have discovered that UvrA interacts with DNA in two phases; a slow phase (∼1.3 s−1) that correlates with an ATP-consuming state previously identified, and a second, much faster search mode. These faster interactions persist for ∼130 ms and using ATP analogues we determine this phase does not require ATP consumption. Including this new fast-search state in a model of the DNA search process reveals that only with this state is it possible for basal levels of UvrA to explore 99% of the E. coli genome within a single division cycle. Altogether, this work uncovers the presence of a rapid, energy efficient search mechanism, which allows UvrA alone to search the entirety of the E. coli genome within a single division cycle.

Graphical abstract: Single molecule iSCAT imaging reveals a fast, energy efficient search mode for the DNA repair protein UvrA

Supplementary files

Article information

Article type
Paper
Submitted
19 Oct 2021
Accepted
06 Feb 2022
First published
21 Mar 2022
This article is Open Access
Creative Commons BY license

Nanoscale, 2022,14, 5174-5184

Single molecule iSCAT imaging reveals a fast, energy efficient search mode for the DNA repair protein UvrA

R. J. Charman and N. M. Kad, Nanoscale, 2022, 14, 5174 DOI: 10.1039/D1NR06913F

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements