Issue 42, 2022

Zn-doped hydroxyapatite@g-C3N4: a novel efficient visible-light-driven photocatalyst for degradation of pharmaceutical pollutants

Abstract

Heterojunction formation has been shown to be an effective technique for tuning nanomaterial features such as chemical reactivity and optical performance. In this study, we discuss the synthesis of Zn metal-doped hydroxyapatite (Zn-HAp) via ion-exchange method followed by the formation of a heterojunction with g-C3N4 by ultrasonication method (Zn-HAp@g-C3N4). This novel heterogeneous Zn-HAp@g-C3N4 photocatalyst was employed in the degradation of pharmaceutical pollutants like antibiotics through photocatalysis under solar light. The morphological, optical, structural and thermal characteristics of the prepared heterojunctions were investigated by SEM-EDS, TEM, UV-DRS, XPS, PXRD, FT-IR and TGA. The optical analysis revealed that visible light harvesting of Zn-HAp@g-C3N4 was improved, and the band gap of pristine HAp was lowered from 3.7 eV to 2.6 eV in the hybrid Zn-HAp@g-C3N4 nanocomposite, indicating improved charge carrier mobility. It was found that, in comparison to Zn-HAp, pristine HAp, and pristine g-C3N4, Zn-HAp@g-C3N4 showed better photocatalytic performance for the degradation of pharmaceutical pollutants, namely ciprofloxacin and levofloxacin, in natural solar light. Moreover, the effects of various reaction parameters, such as initial concentration of antibiotic solution, the amount of catalyst, and effect of solution pH on the rate of photodegradation were examined. The photodegradation of antibiotics with Zn-HAp@g-C3N4 obeyed pseudo-first-order kinetics, with rate constants of 0.05113 min−1 and 0.0613 min−1 for ciprofloxacin and levofloxacin, respectively. Quenching tests were also performed to establish the role of the produced superoxide radicals in the degradation process. A plausible photocatalytic mechanism has been proposed for the increased degradataion of ciprofloxacin and levofloxacin by the Zn-HAp@g-C3N4 nanocomposite under visible light irradiation.

Graphical abstract: Zn-doped hydroxyapatite@g-C3N4: a novel efficient visible-light-driven photocatalyst for degradation of pharmaceutical pollutants

Supplementary files

Article information

Article type
Paper
Submitted
17 Aug 2022
Accepted
29 Sep 2022
First published
13 Oct 2022

New J. Chem., 2022,46, 20182-20192

Zn-doped hydroxyapatite@g-C3N4: a novel efficient visible-light-driven photocatalyst for degradation of pharmaceutical pollutants

J. Kalita, L. Bharali and S. S. Dhar, New J. Chem., 2022, 46, 20182 DOI: 10.1039/D2NJ04087E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements