Issue 39, 2022

Encapsulation of atomically thin gold nanosheets within porous silica for enhanced structural stability and superior catalytic performance

Abstract

Atomically thin gold nanosheets (AuNSs) are fascinating two-dimensional (2D) nanomaterials with distinctive physicochemical properties arising from their ultrathin structure. However, the limited structural stability of these atomically thin AuNSs significantly hinders their practical applications. Here, we report the fabrication of atomically thin AuNSs (two atomic layers thick) encapsulated within a uniform porous silica layer (AuNS@pSiO2), which show excellent structural stability in dried powder form and superior catalytic activity and stability for the reduction of 4-nitrophenol (4-NPh). For this, the synthesized atomically thin AuNSs are functionalized with thiolated poly(ethylene glycol) (SH-PEG) followed by encapsulation in silica layers of different thicknesses using different amounts of tetraethyl orthosilicate. The UV-ozone treatment removes the PEG molecules within the silica layers to form AuNS@pSiO2. The AuNS@pSiO2 shows structural stability in dried powder form while the as-prepared AuNSs aggregate and merge immediately after being dried into a powder. The AuNS@pSiO2 exhibits superior catalytic activity with a normalized rate constant of 8.8 × 104 min−1 gAu−1 compared to the previously reported porous silica-encapsulated gold nanostructures for the 4-NPh reduction reaction. In addition, the AuNS@pSiO2 shows excellent catalytic stability compared to the as-prepared AuNSs during the reusability test at 60 °C. The enhanced structural and catalytic stability of the atomically thin AuNSs could be due to the porous silica layer on their surface.

Graphical abstract: Encapsulation of atomically thin gold nanosheets within porous silica for enhanced structural stability and superior catalytic performance

Supplementary files

Article information

Article type
Paper
Submitted
30 Jun 2022
Accepted
05 Sep 2022
First published
13 Sep 2022

New J. Chem., 2022,46, 18699-18709

Encapsulation of atomically thin gold nanosheets within porous silica for enhanced structural stability and superior catalytic performance

T. Balakrishnan and S. Choi, New J. Chem., 2022, 46, 18699 DOI: 10.1039/D2NJ03221J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements