Issue 16, 2022

High-k BaTiO3 nanoparticle films as gate dielectrics for flexible field effect transistors

Abstract

We demonstrate in this work that surface-passivated, monodisperse ferroelectric 15 nm BaTiO3 nanocubes which exhibit solution processability are viable candidates for the design of insulating layers in flexible capacitors and gate dielectrics in “all inorganic” flexible field effect transistors. The BaTiO3 nanocubes were characterized by various experimental techniques, including microscopy (electron and scanning probe) and vibrational spectroscopy. The nanocubes present intrinsic switchable dielectric polarization at room temperature, as revealed by piezoelectric force microscopy. By drop casting solutions containing BaTiO3 colloidal nanocrystals, uniform, crack-free dielectric/ferroelectric films with controllable thicknesses can be fabricated at room temperature. These films were incorporated into flexible capacitors and field effect transistors whose performance was assessed. The BTO capacitor exhibited a low leakage current density (∼8 × 10−5 A cm−2) upon applying a bias voltage of 4 V, whereas the value of the static dielectric constant of the 500 nm-thick films was εr = 220 as revealed by dielectric spectroscopy measurements. The BaTiO3 nanocrystals were incorporated into transparent and flexible field effect transistors (FETs) whereby the semiconducting channel was fabricated from a 10 nm In2O3 nanoparticle-based film. FETs exhibited high performance n-type characteristics with a small hysteresis (0.1 ± 0.04 V) and a subthreshold swing SS = 808 mV decade−1 at an operating voltage of 10 V. This study provides a simple, yet highly versatile low-cost alternative for the fabrication of flexible electronic devices such as capacitors and FETs with superior performance characteristics by using colloidal inks containing both high capacitance gate dielectric and semiconducting colloidal nanocrystals.

Graphical abstract: High-k BaTiO3 nanoparticle films as gate dielectrics for flexible field effect transistors

Article information

Article type
Paper
Submitted
17 Feb 2022
Accepted
16 Jun 2022
First published
18 Jun 2022
This article is Open Access
Creative Commons BY-NC license

Mater. Adv., 2022,3, 6474-6484

High-k BaTiO3 nanoparticle films as gate dielectrics for flexible field effect transistors

S. S. Parizi, D. Caruntu, A. Rotaru and G. Caruntu, Mater. Adv., 2022, 3, 6474 DOI: 10.1039/D2MA00186A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements