Issue 11, 2022

MicroRNA-21 expression in single living cells revealed by fluorescence and SERS dual-response microfluidic droplet platform

Abstract

Analysis of single-cell microRNA is essential to reveal cell heterogeneity at the genetic level. It raises a high demand for single-cell analytical methods because single-cell microRNA sequences are highly similar and small in size and feature low-level expression. Herein, SERS and fluorescence imaging technology were introduced into a microfluidic droplet platform to realize direct in situ, nondestructive, and highly sensitive detection of a small number of microRNA-21 (miR-21) in a single intact living cell. A multifunctional plasmonic nanoprobe was designed by decorating a gold nanoparticle with fluorescent dye (ROX)-labeled probe DNA and capture DNA strands. The dual-signal switching of fluorescence turn-off and SERS turn-on of ROX in response to miR-21 achieves highly sensitive and reliable detection of miR-21 in a single cell. The turn-on of SERS signal with a zero background guarantees the sensitivity of the detection. The fluorescence-SERS simultaneous response strategy was able to mutually corroborate the test results, improving the reliability of determining low-level expression of miR-21. SERS combined with encapsulation of microdroplets provides a feasible way to conduct in situ, nondestructive determination of miR-21 secreted by single cells, avoiding cell lysis and tedious time-consuming steps of miR-21 isolation. As a result, the miR-21 expressed by various types of single cells was investigated by fluorescence imaging and the cellular heterogeneity in miR-21 expression was evaluated accurately and quantitatively by SERS. This research would provide important reference information for understanding the effects of miRNAs on cancer diseases at the single-cell level.

Graphical abstract: MicroRNA-21 expression in single living cells revealed by fluorescence and SERS dual-response microfluidic droplet platform

Supplementary files

Article information

Article type
Paper
Submitted
29 Jan 2022
Accepted
19 Apr 2022
First published
23 Apr 2022

Lab Chip, 2022,22, 2165-2172

MicroRNA-21 expression in single living cells revealed by fluorescence and SERS dual-response microfluidic droplet platform

D. Sun, F. Cao, X. Yi, H. Zhu, G. Qi, W. Xu and S. Xu, Lab Chip, 2022, 22, 2165 DOI: 10.1039/D2LC00096B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements