Issue 24, 2022

A combined photobiological–photochemical route to C10 cycloalkane jet fuels from carbon dioxide via isoprene

Abstract

The hemiterpene isoprene is a volatile C5 hydrocarbon with industrial applications. It is generated today from fossil resources, but can also be made in biological processes. We have utilized engineered photosynthetic cyanobacteria for direct, light-driven production of bio-isoprene from carbon dioxide, and show that isoprene in a subsequent photochemical step, using either near-UV or simulated or natural solar light, can be dimerized into limonene, paradiprene, and isomeric C10H16 hydrocarbons (monoterpenes) in high yields under photosensitized conditions (above 90% after 44 hours with near-UV and 61% with simulated solar light). The optimal sensitizer in our experiments is di(naphth-1-yl)methanone which we use with a loading of 0.1 mol%. It can also easily be recycled for subsequent photodimerization cycles. The isoprene dimers generated are a mixture of [2 + 2], [4 + 2] and [4 + 4] cycloadducts, and after hydrogenation this mixture is nearly ideal as a drop-in jet fuel. Importantly the photodimerization can be carried out at ambient conditions. However, the high content of hydrogenated [2 + 2] dimers in our isoprene dimer mix lowers the flash point below the threshold (38 °C); yet, these dimers can be converted thermally into [4 + 2] and [4 + 4] dimers. When hydrogenated these monoterpenoids fully satisfy the criteria for drop-in jet fuels with regard to energy density, flashpoint, kinematic viscosity, density, and freezing point. Life-cycle assessment results show a potential to produce the fuel in an environmentally sustainable way.

Graphical abstract: A combined photobiological–photochemical route to C10 cycloalkane jet fuels from carbon dioxide via isoprene

Supplementary files

Article information

Article type
Paper
Submitted
31 Aug 2022
Accepted
01 Nov 2022
First published
07 Nov 2022
This article is Open Access
Creative Commons BY license

Green Chem., 2022,24, 9602-9619

A combined photobiological–photochemical route to C10 cycloalkane jet fuels from carbon dioxide via isoprene

A. Rana, L. Cid Gomes, J. S. Rodrigues, D. M. M. Yacout, H. Arrou-Vignod, J. Sjölander, N. Proos Vedin, O. El Bakouri, K. Stensjö, P. Lindblad, L. Andersson, C. Sundberg, M. Berglund, P. Lindberg and H. Ottosson, Green Chem., 2022, 24, 9602 DOI: 10.1039/D2GC03272D

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements