Issue 5, 2022

Controlled hydrogenation of a biomass-derived platform chemical formed by aldol-condensation of 5-hydroxymethyl furfural (HMF) and acetone over Ru, Pd, and Cu catalysts

Abstract

We studied the hydrogenation at temperatures from 313–393 K of a biomass-derived platform molecule, 5-hydroxymethyl furfural (HMF)-acetone-HMF (HAH) over Pd, Ru, and Cu based catalysts. HAH was selectively hydrogenated to produce partially-hydrogenated monomers (PHAH) over Cu and Ru catalysts and to fully-hydrogenated HAH monomers (FHAH) over the Ru catalyst. Pd based catalysts yielded a mixture of partially and fully hydrogenated monomers. Lumped reaction kinetics models were employed to quantify the kinetic behavior for hydrogenation over Ru, Cu, and Pd catalysts. The 5-step pathway exhibited over Pd and Ru catalysts consists of both series and parallel reaction steps, where HAH is both converted to fully hydrogenated products sequentially via series reactions of partially hydrogenated intermediates, as well as converted directly in parallel reactions to form the fully hydrogenated products. In contrast, the 3-step pathway over the Cu catalyst consists only of the consecutive reaction steps, where the final product was formed via series reactions of intermediate products. Additionally, reaction over the Cu catalyst did not hydrogenate the furan rings of the HAH molecule and yielded a different final product than those hydrogenation over Pd and Ru catalysts. Batch conditions are determined for each hydrogenated product that give the highest yields in both batch and plug flow reactors.

Graphical abstract: Controlled hydrogenation of a biomass-derived platform chemical formed by aldol-condensation of 5-hydroxymethyl furfural (HMF) and acetone over Ru, Pd, and Cu catalysts

Supplementary files

Article information

Article type
Paper
Submitted
13 Dec 2021
Accepted
09 Feb 2022
First published
09 Feb 2022

Green Chem., 2022,24, 2146-2159

Author version available

Controlled hydrogenation of a biomass-derived platform chemical formed by aldol-condensation of 5-hydroxymethyl furfural (HMF) and acetone over Ru, Pd, and Cu catalysts

E. B. Gilcher, H. Chang, G. W. Huber and J. A. Dumesic, Green Chem., 2022, 24, 2146 DOI: 10.1039/D1GC04650K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements