Tieguanyin extracts ameliorated DSS-induced mouse colitis by suppressing inflammation and regulating intestinal microbiota

Abstract

Previous studies have shown that a typical kind of oolong tea, Tieguanyin, has multiple health benefits, while there is no research investigating its effects on inflammatory bowel disease (IBD). In this study, we aimed to explore the alleviation effects of Tieguanyin water (TWE) and ethanol (TES) extracts on IBD. Physiological activity status, colitis severity (disease activity index (DAI), colon and spleen weight), inflammatory cytokines (interleukin (IL)-4, interferon-γ (IFN-γ), IL-17, transforming growth factor-β (TGF-β), and IL-10) and microbiota composition were measured in experimental colitis mice induced by dextran sulfate sodium (DSS). TWE and TES exerted remarkable protective effects against experimental colitis, showing decreased colitis severity and improved colon morphology. TES also suppressed colonic inflammation via downregulation of pro-inflammatory cytokines (IL-4, IFN-γ, IL-17, and TGF-β) and upregulation of the anti-inflammatory cytokine IL-10. In addition, TWE and TES treatment caused significant alterations in the gut microbiota. Oolong tea extract treatment reduced the community abundance of pernicious bacteria EscherichiaShigella from 21.6% (DSS) to 0.9% (TES) and 1.2% (TWE), and elevated that of probiotics Lachnospiraceae_NK4A136_group from 2.2% to 15.2% (TES) and 11.9% (TWE). Therefore, TWE and TES both remarkably ameliorated DSS-induced colitis, which suggested oolong extracts could be a candidate for IBD treatment.

Graphical abstract: Tieguanyin extracts ameliorated DSS-induced mouse colitis by suppressing inflammation and regulating intestinal microbiota

Supplementary files

Article information

Article type
Paper
Submitted
19 Sep 2022
Accepted
11 Nov 2022
First published
23 Nov 2022

Food Funct., 2022, Advance Article

Tieguanyin extracts ameliorated DSS-induced mouse colitis by suppressing inflammation and regulating intestinal microbiota

Y. Zhang, X. Feng, H. Lin, X. Chen, P. He, Y. Wang and Q. Chu, Food Funct., 2022, Advance Article , DOI: 10.1039/D2FO02781J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements