Issue 18, 2022

Gut microbiota-directed intervention with high-amylose maize ameliorates metabolic dysfunction in diet-induced obese mice

Abstract

Obesity is a chronic disease that may lead to the development of metabolic diseases, cardiovascular diseases, and cancers and has been predicted to affect one billion adults by 2030. Owing to the pivotal role of the gut microbiota in health, including metabolism and energy homeostasis, dietary fiber, the primary energy resource for the gut microbiota, not only helps reduce appetite and short-term food intake but also modulates the structure of the gut microbiota. In this study, we investigated whether high-amylose maize (HAM), with a particular amount of dietary fiber, improves dysmetabolism and gut microbiota dysbiosis in diet-induced obese mice. Promisingly, the HAM dietary intervention not only reduced body weight gain, adipocyte hypertrophy, and dyslipidemia but also mitigated non-alcoholic fatty liver disease, insulin resistance, impaired glucose tolerance, and inflammation in the liver and epididymal white adipose tissues in high-fat diet (HFD)-fed obese mice. In addition, the HAM dietary intervention ameliorated gut microbiota dysbiosis in HFD-fed mice. Changes in families, genera, and species of gut biota that have a relative abundance of 0.01% in at least one group were scrutinized. At the species level, HAM dietary intervention increased Bifidobacterium pseudolongum, Bifidobacterium animalis, Bifidobacterium bifidum, and Lactobacillus paraplantarum and decreased Streptococcus agalactiae, Mucispirillum schaedleri, and Alistipes indistinctus. This change in the gut microbiota driven by the HAM diet was strongly associated with obesity-related indices, highlighting the nutraceutical potential of HAM for improving overall metabolic health. Taken together, this study demonstrates the potential of the HAM diet for mediating metabolic syndrome and gut microbiota dysbiosis.

Graphical abstract: Gut microbiota-directed intervention with high-amylose maize ameliorates metabolic dysfunction in diet-induced obese mice

Supplementary files

Article information

Article type
Paper
Submitted
05 May 2022
Accepted
31 Jul 2022
First published
04 Aug 2022

Food Funct., 2022,13, 9481-9495

Gut microbiota-directed intervention with high-amylose maize ameliorates metabolic dysfunction in diet-induced obese mice

W. Chiou, W. Lai, Y. Cai, M. Du, H. Lai, J. Chen, H. Huang, H. Liu and C. Huang, Food Funct., 2022, 13, 9481 DOI: 10.1039/D2FO01211A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements