Issue 12, 2022

Lactobacillus reuteri J1 prevents obesity by altering the gut microbiota and regulating bile acid metabolism in obese mice

Abstract

Obesity is closely related to metabolic syndromes such as hyperlipidemia and diabetes and has become a global public health problem. Probiotics are now used as a treatment for obesity, but the mechanism by which probiotics treat obesity remains unclear. Herein, we investigated the effects of Lactobacillus reuteri J1 ( L. reuteri J1) on obese mice with the strain being administered at 1010, 109 and 108 CFU mL−1 and explored the possible underlying molecular mechanism. The results revealed that L. reuteri J1 prevented weight gain, lowered fat mass and relieved dyslipidemia, and improved glucose homeostasis and insulin sensitivity. Moreover, the effect of obesity reversal exhibited dose-dependence to some extent. More importantly, mice treated with L. reuteri J1 altered the gut microbiota and bile acid (BA) composition. Analysis of the gut microbiome showed that L. reuteri J1 increased the relative abundances of Lactobacillus, Akkermansia and Clostridium, which strongly correlated with ursodeoxycholic acid (UDCA) and lithocholic acid (LCA). UDCA and LCA are thought to inhibit farnesoid X receptor (FXR) and activate transmembrane G protein-coupled receptor 5 (TGR5) expression, respectively. Consistent with the increase in the BA pool, L. reuteri J1 treatment inhibited the ileum FXR/FGF15 signaling pathway but activated the hepatic FXR/SHP signaling pathway, resulting in reduced hepatic triglyceride accumulation. In addition, L. reuteri J1 treatment promoted adipose browning by upregulating the expression of uncoupling protein 1 (UCP1), which was mainly due to the BA receptor TGR5. These results demonstrated that L. reuteri J1 could treat obesity by inhibiting the FXR signaling pathways and remodeling white adipose tissue, linked with UDCA and LCA which are affected by intestinal microbiota.

Graphical abstract: Lactobacillus reuteri J1 prevents obesity by altering the gut microbiota and regulating bile acid metabolism in obese mice

Article information

Article type
Paper
Submitted
24 Dec 2021
Accepted
04 May 2022
First published
12 May 2022

Food Funct., 2022,13, 6688-6701

Lactobacillus reuteri J1 prevents obesity by altering the gut microbiota and regulating bile acid metabolism in obese mice

C. Zhang, R. Fang, X. Lu, Y. Zhang, M. Yang, Y. Su, Y. Jiang and C. Man, Food Funct., 2022, 13, 6688 DOI: 10.1039/D1FO04387K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements