Issue 8, 2022

Benchmark uranium extraction from seawater using an ionic macroporous metal–organic framework

Abstract

Large-scale uranium extraction from seawater (UES) is widely considered as reconciliation to increasing global energy demand and climate change crises. However, an ideal uranium sorbent combining the features of high capacity, excellent selectivity, and ultra-fast kinetics is highly desirable but a long-standing challenge due to the lack of a proper adsorbent. Herein, we adopted a prototypal hybridization strategy to design a rare ionic macroporous metal–organic framework (MOF) decorated with multiple functional groups. The resulting ionic adsorbent captures 99.98% of the uranium in just 120 min (from ∼50 000 to ∼10 ppb) and offers a very large distribution coefficient, KUd > 107 mL g−1, demonstrating a strong affinity towards uranium. Notably, the material harvests 96.3% of uranium simply in 120 min from natural seawater, affording a remarkable enrichment index of 25044 and thereby introducing a new benchmark uranium adsorbent. Moreover, it satisfied the preset target of the UES standard (6 mg g−1) within 2 days and achieved a record uranium uptake capacity of 28.2 mg g−1 from natural seawater only in 25 days, which is a significant breakthrough in UES. The structural evidence from both experimental and theoretical studies confirmed that the formation of favourable chelating motifs into the ionic macropores governs the highly selective recovery of uranium from water.

Graphical abstract: Benchmark uranium extraction from seawater using an ionic macroporous metal–organic framework

Supplementary files

Article information

Article type
Paper
Submitted
12 Apr 2022
Accepted
30 Jun 2022
First published
30 Jun 2022

Energy Environ. Sci., 2022,15, 3462-3469

Benchmark uranium extraction from seawater using an ionic macroporous metal–organic framework

S. Mollick, S. Saurabh, Y. D. More, S. Fajal, M. M. Shirolkar, W. Mandal and S. K. Ghosh, Energy Environ. Sci., 2022, 15, 3462 DOI: 10.1039/D2EE01199A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements