Issue 48, 2022

Supercritical fluid-assisted modification combined with the resynthesis of SmCoO3 as an effective tool to enhance the long-term performance of SmCoO3-derived catalysts for the dry reforming of methane to syngas

Abstract

The dry reforming of methane to syngas (DRM) is of increasing significance concerning, first, the production of raw materials for commercial organic/petrochemical syntheses and for hydrogen energetic, and, second, the utilization of two most harmful greenhouse gases. Herein, new SmCoO3-based DRM catalysts derived from heterometallic precursors and operated without preliminary reduction are reported. For the first time, the effect of supercritical fluids-assisted modification of the SmCoO3-derived catalysts combined with the re-oxidation of spent catalysts to SmCoO3 onto its long-term performance was studied. In particular, the modification of heterometallic precursors by supercritical antisolvent precipitation (SAS) considerably decreases coke formation upon the exploitation of the derived SmCoO3 sample. Moreover, the re-oxidation of the corresponding spent catalysts followed by pre-heating under N2 affords catalysts that stably provide syngas yields of 88–95% for at least 41 h at 900 °C. The achieved yields are among the highest ones currently reported for DRM catalysts derived from both LnMO3 perovskites and related oxides. The origins of such good performance are discussed. Given the simplicity and availability of all the applied methods and chemicals, this result opens prospects for exploiting SAS in the design of efficient DRM catalysts.

Graphical abstract: Supercritical fluid-assisted modification combined with the resynthesis of SmCoO3 as an effective tool to enhance the long-term performance of SmCoO3-derived catalysts for the dry reforming of methane to syngas

Supplementary files

Article information

Article type
Paper
Submitted
16 Sep 2022
Accepted
08 Nov 2022
First published
09 Nov 2022

Dalton Trans., 2022,51, 18446-18461

Supercritical fluid-assisted modification combined with the resynthesis of SmCoO3 as an effective tool to enhance the long-term performance of SmCoO3-derived catalysts for the dry reforming of methane to syngas

A. V. Gavrikov, A. S. Loktev, A. B. Ilyukhin, I. E. Mukhin, M. A. Bykov, K. I. Maslakov, A. M. Vorobei, O. O. Parenago, A. A. Sadovnikov and A. G. Dedov, Dalton Trans., 2022, 51, 18446 DOI: 10.1039/D2DT03026H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements