Issue 33, 2022

Converting cytochrome c into a DyP-like metalloenzyme

Abstract

Dye-decolorizing peroxidase (DyP), which can degrade anthraquinone dyes using H2O2, is an attractive prospect for potential biotechnological applications for environmental purification. We previously designed an artificial DyP with an optimal pH for reactive blue 19 (RB19) degradation shifting from pH 4.5 to 6.5. We then attempted to degrade RB19 using Escherichia coli expressing this mutant, but RB19 was degraded equally compared with bacteria expressing wild-type (WT) DyP because most DyP was expressed in a heme-free form. In this study, we attempted to design an artificial peroxidase based on cytochrome c (cyt c), whose heme is covalently bound to the protein. We found that cyt c can degrade RB19, but its ability at pH 7.0 was ∼60% of that of DyP from Vibrio cholerae at pH 4.5. To enhance this activity we constructed several mutants using three approaches. Initially, to improve reactivity with H2O2, Met80 was replaced with a noncoordinating residue, Ala or Val, but catalytic efficiency (kcat/Km) was increased by only ∼1.5-fold. To enhance the substrate binding affinity we introduced an additional Trp by replacing Pro76 (P76W). The catalytic efficiency of this mutant was ∼3-fold greater than that of WT cyt c. Finally, to form a hydrogen bond to axial histidine Gly29 was replaced with Asp (G29D). This mutant exhibited an ∼80-fold greater dye-decolorizing activity. Escherichia coli expressing the G29D mutant was unable to degrade RB19 in solution due to degradation of heme itself, but this study provides new insights into the design of artificial DyPs.

Graphical abstract: Converting cytochrome c into a DyP-like metalloenzyme

Supplementary files

Article information

Article type
Paper
Submitted
04 Jul 2022
Accepted
01 Aug 2022
First published
01 Aug 2022

Dalton Trans., 2022,51, 12641-12649

Author version available

Converting cytochrome c into a DyP-like metalloenzyme

I. Omura, K. Ishimori and T. Uchida, Dalton Trans., 2022, 51, 12641 DOI: 10.1039/D2DT02137D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements