Issue 33, 2022

Calculating the chemical mechanism of nitrogenase: new working hypotheses

Abstract

The enzyme nitrogenase converts N2 to NH3 with stoichiometry N2 + 8H+ + 8e → 2NH3 + H2. The mechanism is chemically complex with multiple steps that must be consistent with much accumulated experimental information, including exchange of H2 and N2 and the N2-dependent hydrogenation of D2 to HD. Previous investigations have developed a collection of working hypotheses that guide ongoing density functional investigations of mechanistic steps and sequences. These include (i) hypotheses about the serial provision of protons and their conversion to H atoms bonded to S and Fe atoms of the FeMo-co catalytic site, (ii) the migration of H atoms over the surface of FeMo-co, (iii) the roles of His195, (iv) identification of three protein channels, one for the ingress of N2, a separate pathway for the passage of exogenous H2 (D2) and product H2 (HD), and a hydrophilic pathway for egress of product NH3. Two additional working hypotheses are described in this paper. N2 passing along the N2 channel approaches and binds end-on to the exo coordination position of Fe2, with favourable energetics when FeMo-co is pre-hydrogenated. This exo-Fe2–N2 is apparently not reduced but has a promotional role by expanding the reaction zone. A second N2 can enter via the N2 ingress channel and bind at the endo-Fe6 position, where it is surrounded by H atom donors suitable for the N2 → NH3 conversion. It is proposed that this endo-Fe6 position is also the binding site for H2 (generated or exogenous), accounting for the competitive inhibition of N2 reduction by H2. The HD reaction occurs at the endo-Fe6 site, promoted by N2 at the exo-Fe2 site. The second hypothesis concerns the most stable electronic states of FeMo-co with ligands bound at Fe2 and Fe6, and provides a protocol for management of electronic states in mechanism calculations.

Graphical abstract: Calculating the chemical mechanism of nitrogenase: new working hypotheses

Supplementary files

Article information

Article type
Paper
Submitted
17 Jun 2022
Accepted
02 Aug 2022
First published
10 Aug 2022

Dalton Trans., 2022,51, 12717-12728

Calculating the chemical mechanism of nitrogenase: new working hypotheses

I. Dance, Dalton Trans., 2022, 51, 12717 DOI: 10.1039/D2DT01920E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements