Issue 34, 2022

Diaryl dithiocarbamates: synthesis, oxidation to thiuram disulfides, Co(iii) complexes [Co(S2CNAr2)3] and their use as single source precursors to CoS2

Abstract

Air and moisture stable diaryl dithiocarbamate salts, Ar2NCS2Li, result from addition of CS2 to Ar2NLi, the latter being formed upon deprotonation of diarylamines by nBuLi. Oxidation with K3[Fe(CN)6] affords the analogous thiuram disulfides, (Ar2NCS2)2, two examples of which (Ar = p-C6H4X; X = Me, OMe) have been crystallographically characterised. The interconversion of dithiocarbamate and thiuram disulfides has also been probed electrochemically and compared with that established for the widely-utilised diethyl system. While oxidation reactions are generally clean and high yielding, for Ph(2-naphthyl)NCS2Li an ortho-cyclisation product, 3-phenylnaphtho[2,1-d]thiazole-2(3H)-thione, is also formed, resulting from a competitive intramolecular free-radical cyclisation. To demonstrate the coordinating ability of diaryl dithiocarbamates, a small series of Co(III) complexes have been prepared, with two examples, [Co{S2CN(p-tolyl)2}3] and [Co{S2CNPh(m-tolyl)}3] being crystallographically characterised. Solvothermal decomposition of [Co{S2CN(p-tolyl)2}3] in oleylamine generates phase pure CoS2 nanospheres in an unexpected phase-selective manner.

Graphical abstract: Diaryl dithiocarbamates: synthesis, oxidation to thiuram disulfides, Co(iii) complexes [Co(S2CNAr2)3] and their use as single source precursors to CoS2

Supplementary files

Article information

Article type
Paper
Submitted
06 Jun 2022
Accepted
06 Aug 2022
First published
09 Aug 2022
This article is Open Access
Creative Commons BY-NC license

Dalton Trans., 2022,51, 13061-13070

Diaryl dithiocarbamates: synthesis, oxidation to thiuram disulfides, Co(III) complexes [Co(S2CNAr2)3] and their use as single source precursors to CoS2

J. C. Sarker, R. Nash, S. Boonrungsiman, D. Pugh and G. Hogarth, Dalton Trans., 2022, 51, 13061 DOI: 10.1039/D2DT01767A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements