Issue 18, 2022

Digging into protein metalation differences triggered by fluorine containing-dirhodium tetracarboxylate analogues

Abstract

The catalytic and biological properties of dirhodium tetracarboxylates ([Rh2(μ-O2CR)4L2], L = axial ligand and R = CH3-, CH3CH2-, etc.) largely depend on the nature of bridging carboxylate equatorial μ-O2CR ligands, which can be easily exchanged by solvent molecules when R is CF3 (i.e. μ-O2CR is trifluoroacetate, tfa). Here, we prepared the [Rh2(OAc)(tfa)3] compound and investigated its interaction with bovine pancreatic ribonuclease and lysozyme under the same conditions used to study the reactivity of these proteins with [Rh2(OAc)4] and [cis-Rh2(OAc)2(tfa)2]. UV-vis absorption spectroscopy and 19F nuclear magnetic resonance studies indicate that [Rh2(OAc)(tfa)3] rapidly loses tfa ligands and interacts with the proteins. Crystallographic data demonstrate that the reaction of [Rh2(OAc)(tfa)3] with proteins can lead to products that are significantly different when compared to those obtained with [Rh2(OAc)4] and [cis-Rh2(OAc)2(tfa)2]: the dirhodium centre can bind the side chain of His residues at both axial and equatorial sites, at variance with what is found in the case of [Rh2(OAc)4] and [cis-Rh2(OAc)2(tfa)2]. These data indicate that the hydrolysis of dirhodium tetracarboxylates plays a significant role in defining their reaction with proteins allowing the formation of unexpected reaction products. These results suggest that [cis-Rh2(OAc)2(tfa)2] and [Rh2(OAc)(tfa)3] can be used to obtain different dirhodium/peptide and dirhodium/protein adducts with distinct catalytic properties and can explain the different cytotoxicity exhibited by tfa-containing dirhodium tetracarboxylates.

Graphical abstract: Digging into protein metalation differences triggered by fluorine containing-dirhodium tetracarboxylate analogues

Supplementary files

Article information

Article type
Paper
Submitted
21 Mar 2022
Accepted
14 Apr 2022
First published
14 Apr 2022
This article is Open Access
Creative Commons BY license

Dalton Trans., 2022,51, 7294-7304

Digging into protein metalation differences triggered by fluorine containing-dirhodium tetracarboxylate analogues

D. Loreto, A. Esposito, N. Demitri, A. Guaragna and A. Merlino, Dalton Trans., 2022, 51, 7294 DOI: 10.1039/D2DT00873D

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements