Issue 13, 2022

Chromous siloxides of variable nuclearity and magnetism

Abstract

Treatment of Cr[N(SiMe3)2]2(thf)2 with HOSiR3 (R = Et, iPr) in THF afforded the bridged CrII siloxide complexes Cr3(OSiEt3)2(μ-OSiEt3)4(thf)2 and Cr2(OSiiPr3)2(μ-OSiiPr3)2(thf)2 in high yield. Exposure of these compounds to vacuum in aliphatic solvents led to the loss of coordinated THF and to the formation of the homoleptic chromous siloxides Cr4(μ-OSiEt3)8 and Cr3(OSiiPr3)2(μ-OSiiPr3)4, respectively, in moderate to high yield. Use of TMEDA as a potentially bidentate donor molecule gave the monomeric cis-coordinated siloxide Cr(OSiiPr3)2(tmeda) (tmeda = N,N,N′,N′-tetramethylethane-1,2-diamine). Oxidation of Cr2(OSiiPr3)2(μ-OSiiPr3)2(thf)2 with CHI3 and C2Cl6 produced the trigonal bipyramidal chromic compound CrIII(OSiiPr)3(thf)2 and asymmetrically coordinated Cr2Cl3(OSiiPr3)3(thf)3, respectively. Magnetic measurements (Evans and SQUID) hinted at (a) antiferromagnetic interactions between the CrII centres, (b) revealed higher effective magnetic moments (μeff) for cis-coordinated monomeric heteroleptic complexes compared to trans-coordinated ones, and (c) pointed out the highest (μeff) for the tetranuclear complex Cr4(μ-OSiEt3)8 (6.26μB, SQUID, 300 K; Cr⋯Cradjacent avg. 2.535 A).

Graphical abstract: Chromous siloxides of variable nuclearity and magnetism

Supplementary files

Article information

Article type
Paper
Submitted
04 Feb 2022
Accepted
25 Feb 2022
First published
25 Feb 2022

Dalton Trans., 2022,51, 5072-5081

Chromous siloxides of variable nuclearity and magnetism

S. P. O. Trzmiel, J. Langmann, C. Maichle-Mössmer and R. Anwander, Dalton Trans., 2022, 51, 5072 DOI: 10.1039/D2DT00354F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements