Issue 3, 2022

ULSA: unified language of synthesis actions for the representation of inorganic synthesis protocols

Abstract

Applying AI power to predict syntheses of novel materials requires high-quality, large-scale datasets. Extraction of synthesis information from scientific publications is still challenging, especially for extracting synthesis actions, because of the lack of a comprehensive labeled dataset using a solid, robust, and well-established ontology for describing synthesis procedures. In this work, we propose the first unified language of synthesis actions (ULSA) for describing inorganic synthesis procedures. We created a dataset of 3040 synthesis procedures annotated by domain experts according to the proposed ULSA scheme. To demonstrate the capabilities of ULSA, we built a neural network-based model to map arbitrary inorganic synthesis paragraphs into ULSA and used it to construct synthesis flowcharts for synthesis procedures. Analysis of the flowcharts showed that (a) ULSA covers essential vocabulary used by researchers when describing synthesis procedures and (b) it can capture important features of synthesis protocols. The present work focuses on the synthesis protocols for solid-state, sol–gel, and solution-based inorganic synthesis, but the language could be extended in the future to include other synthesis methods. This work is an important step towards creating a synthesis ontology and a solid foundation for autonomous robotic synthesis.

Graphical abstract: ULSA: unified language of synthesis actions for the representation of inorganic synthesis protocols

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
04 Nov 2021
Accepted
18 Apr 2022
First published
27 Apr 2022
This article is Open Access
Creative Commons BY-NC license

Digital Discovery, 2022,1, 313-324

ULSA: unified language of synthesis actions for the representation of inorganic synthesis protocols

Z. Wang, K. Cruse, Y. Fei, A. Chia, Y. Zeng, H. Huo, T. He, B. Deng, O. Kononova and G. Ceder, Digital Discovery, 2022, 1, 313 DOI: 10.1039/D1DD00034A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements