Issue 7, 2022

Formic acid generating in situ H2 and CO2 for nitrite reduction in the aqueous phase

Abstract

The aim of this work is to explore and to understand the effect of pH, concentrations and presence of oxygen traces on the reduction of nitrite in drinking water with Pd/γ-Al2O3, using formic acid as an in situ hydrogen supplier. Formic acid can reduce nitrite in the pH range between 4.5 and 8, producing negligible amounts of ammonium. By investigating the effect of pH, traces of oxygen and formic acid concentration on the conversion rates of both formic acid and nitrite, it is found that both the rate of conversion on nitrite with formic acid and the rate of formic acid decomposition are controlled by competitive adsorption of nitrite and formic acid on Pd, forming chemisorbed NO and chemisorbed H, respectively. The adsorbed species are studied with ATR-IR spectroscopy. Formic acid decomposition requires an ensemble of empty sites, favored by a low surface coverage of NO. The NO surface coverage, on the other hand, decreases with increasing hydrogen coverage, by converting NO to N2. The H-coverage in turn depends on the rate of formic acid decomposition. This causes an apparent order for the rate of formic acid decomposition of 1.4 in formic acid. In short, the surface coverage of NO should not be too high in order to have sufficient empty sites available for formic acid decomposition. When the pH of the solution is below 4.5, homogeneous disproportionation of nitric acid occurs forming nitrate and NO, resulting in catalyst poisoning with NO. The catalyst shows no activity at pH above 8, as formate ions are not reactive under such conditions.

Graphical abstract: Formic acid generating in situ H2 and CO2 for nitrite reduction in the aqueous phase

Supplementary files

Article information

Article type
Paper
Submitted
11 Aug 2021
Accepted
09 Feb 2022
First published
09 Feb 2022
This article is Open Access
Creative Commons BY-NC license

Catal. Sci. Technol., 2022,12, 2122-2133

Formic acid generating in situ H2 and CO2 for nitrite reduction in the aqueous phase

P. Xu, S. Agarwal and L. Lefferts, Catal. Sci. Technol., 2022, 12, 2122 DOI: 10.1039/D1CY01448J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements