Toward highly efficient hyperfluorescence-based emitters through excited-states alignment using novel optimally tuned range-separated models†
Abstract
Hyperfluorescence has recently been introduced as a promising strategy to achieve organic light-emitting diodes (OLEDs) with high color purity and enhanced stability. In this approach, fluorescent emitters (FEs) with strong and narrow band fluorescence are integrated in thin films containing sensitizers exhibiting thermally activated delayed fluorescence (TADF). Toward highly efficient hyperfluorescence-based emitters, the excited-states ordering of the FEs should be well-aligned. Given some recent endeavors in this context, the related theoretical explorations are relatively limited and have proven to be challenging. In this work, alignments of the corresponding excited-states, crucial for both the fast Förster resonance energy transfer and suppression of the Dexter energy transfer from TADF sensitizers to FEs, have theoretically been investigated using optimally tuned range-separated hybrid functionals (OT-RSHs). We have proposed and validated several variants of the models including OT-RSHs, their coupled versions with the polarizable continuum model, OT-RSHs–PCM, as well as the screened versions accounting for the screening effects by the electron correlation through the scalar dielectric constant, OT-SRSHs, for a reliable description of the excited-states ordering in the FEs of the hyperfluorescence-based materials. Particular attention is paid to the influence of the underlying density functional approximations as well as the short- and long-range Hartree-Fock (HF) exchange contributions and the range-separation parameter. Considering a series of experimentally known hyperfluorescence-based emitters as working models, it is unveiled that any combination of the ingredients in the proposed models does not render the correct order of the excited-states of the FEs, but a particular compromise among the involved parameters is needed to more accurately account for the relevant excited-states alignment. Perusing the results of our developed methods, the best ones are found to be the generalized gradient approximation-based OT-RSHs–PCM with the correct asymptotic behavior and incorporating no (low) HF exchange contribution at the short-range regime. The proposed models show superior performances not only with respect to their standard counterparts with the default parameters but also as compared to other range-separated approximations. Accountability of the best-proposed model is also put into broader perspective, where it has been employed for the computational design of several molecules as promising FE candidates prone to be utilized in hyperfluorescence-based materials. Summing up, the proposed models in this study can be recommended for both the theoretical modeling and confirming the experimental observations in the field of hyperfluorescence-based OLEDs.