Issue 47, 2022

A strategy of enhancing the ionic conductivity of Li7La3Zr2O12 under accurate sintering conditions

Abstract

Garnet-type Li7La3Zr2O12 (LLZO) oxide solid electrolytes are spotlighted as solid electrolytes for lithium-ion secondary batteries due to their high thermal and electrochemical stability. However, LLZO has a low ionic conductivity compared to liquid electrolytes, which is one of the biggest problems hindering the commercialization of all-solid-state batteries (ASSBs). Essential conditions for improving the ionic conductivity can be classified into two factors: (1) formation of a cubic LLZO phase related to bulk ionic conductivity and (2) formation of grain boundaries for low interfacial resistance. In this work, cubic LLZO phase formation conditions were first confirmed by TGA-DTA analysis. The LLZO phase was pre-formed via a holding range of furnace temperature profile (HRFTP) found by TGA-DTA analysis. The pre-formed LLZO phase could stabilize the cubic LLZO phase after a sintering process. This was confirmed by XRD analysis. Stabilized cubic LLZO under HRFTP conditions could enhance the bulk ionic conductivity, the main factor affecting the total ionic conductivity. In addition, to confirm the characteristics of sintering temperature changes, the grain boundaries of LLZO surfaces and the color of LZO pellets were investigated by SEM in detail. By setting the holding time process at 600 °C, the pre-formed LLZO phase stabilized the cubic LLZO phase formation after the sintering process. By optimizing the sintering temperature, both bulk and grain boundary ionic conductivities were improved. As a result, an ionic conductivity of 1.87 × 10−4 S cm−1 of the cubic LLZO phase was confirmed by EIS analysis. These results provide an insight into the reproducibility of the facile synthesis of LLZO. This strategy can be successfully applied to next-generation ASSBs.

Graphical abstract: A strategy of enhancing the ionic conductivity of Li7La3Zr2O12 under accurate sintering conditions

Supplementary files

Article information

Article type
Paper
Submitted
06 Jul 2022
Accepted
24 Oct 2022
First published
29 Nov 2022

Phys. Chem. Chem. Phys., 2022,24, 29159-29164

A strategy of enhancing the ionic conductivity of Li7La3Zr2O12 under accurate sintering conditions

M. Kim, H. G. Park and K. Park, Phys. Chem. Chem. Phys., 2022, 24, 29159 DOI: 10.1039/D2CP03072A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements