Issue 26, 2022

Liquid-like properties of cyclopentadienyl complexes of barium: molecular dynamics simulations of nanoscale droplets

Abstract

Cyclopentadienyl complexes of barium have great utility in materials science and engineering, in particular, as precursors in the atomic layer deposition processes, which are required to be fluidic as well as thermally stable and volatile. Here, we investigated the liquid-like properties of cyclopentadienyl barium complexes including (Me5C5)2Ba, (tBu3C5H2)2Ba, (iPr4C5H)2Ba, (iPr5C5)2Ba, and [(SiMe3)3C5H2]2Ba, using molecular dynamics simulations of nanoscale droplets. The compounds were modeled using a recently developed generic force field, GFN-FF. Nanoscale droplets with about 5.0 nm diameters were formed by aggregating 96 molecules of each compound. Simulation results reveal that substituting methyl groups of (Me5C5)2Ba with other alkyl and silyl moieties has a non-negligible effect on the intra- and intermolecular structure and dynamics. In particular, in contrast to more flexible (Me5C5)2Ba, the substitution with five iso-propyl groups to form (iPr5C5)2Ba adds rigidity to the complex with restricted orientational fluctuations for two cyclopentadienyl ligands and arranges molecules parallel to each other with greater probability. In addition, comparison between (tBu3C5H2)2Ba, with three tert-butyl groups, and its silyl analogue, [(SiMe3)3C5H2]2Ba, reveals that intermolecular interactions between the molecules with silyl groups are softer than those with tert-butyl groups and result in broader radial distribution functions, whereas the dynamic properties are similar for both compounds. This work suggests that molecular dynamics simulations contribute to molecular-level understanding of the effect of chemical substitution in organometallic compounds on the intra- and intermolecular properties of molecular liquids.

Graphical abstract: Liquid-like properties of cyclopentadienyl complexes of barium: molecular dynamics simulations of nanoscale droplets

Supplementary files

Article information

Article type
Paper
Submitted
23 May 2022
Accepted
08 Jun 2022
First published
09 Jun 2022

Phys. Chem. Chem. Phys., 2022,24, 15982-15990

Liquid-like properties of cyclopentadienyl complexes of barium: molecular dynamics simulations of nanoscale droplets

H. R. Hyun, J. Han, J. Lim, Y. J. Park, B. Choi, C. Baik and J. S. Kim, Phys. Chem. Chem. Phys., 2022, 24, 15982 DOI: 10.1039/D2CP02322A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements