Issue 35, 2022

Conformational fluctuations in the molten globule state of α-lactalbumin

Abstract

A molten globule (MG) state is an intermediate state of a protein observed during the unfolding of the native structure. The MG state of the protein is induced by various denaturing agents (like urea), extreme pH, pressure, and heat. Experiments suggest that the MG state of some proteins is functionally relevant even if there is no well-defined tertiary structure. Earlier experimental and theoretical studies show that the MG state of a protein is dynamic in nature, where conformational states are interconverted on nanosecond time scales. These observations lead us to study and compare the conformational fluctuations of the MG state to those of intrinsic disordered proteins (IDPs). We consider a milk protein, α-lactalbumin (aLA), which shows an MG state at low pH upon removal of the calcium (Ca2+) ion. We use the constant pH molecular dynamics (CpHMD) simulation to maintain the protonation state of titratable residues at a low pH during the simulation. We use the dihedral principal component analysis, the density based clustering method, and the machine learning technique to identify the conformational fluctuations. We observe metastable states in the MG state. The residues containing the essential coordinates responsible for metastability belong to a stable helix in the crystal structure, but most of them prefer unstructured or bent conformation in the MG state. These residues control the exposure of the putative binding residues for fatty acids. Thus, the MG state of a protein behaves as an intrinsic disorder protein, although the disorder here is induced by external conditions.

Graphical abstract: Conformational fluctuations in the molten globule state of α-lactalbumin

Supplementary files

Article information

Article type
Paper
Submitted
12 May 2022
Accepted
12 Aug 2022
First published
16 Aug 2022

Phys. Chem. Chem. Phys., 2022,24, 21348-21357

Conformational fluctuations in the molten globule state of α-lactalbumin

A. G. Moulick and J. Chakrabarti, Phys. Chem. Chem. Phys., 2022, 24, 21348 DOI: 10.1039/D2CP02168D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements