Issue 17, 2022

An open-source framework for fast-yet-accurate calculation of quantum mechanical features

Abstract

We present the open-source framework kallisto that enables the efficient and robust calculation of quantum mechanical features for atoms and molecules. For a benchmark set of 49 experimental molecular polarizabilities, the predictive power of the presented method competes against second-order perturbation theory in a converged atomic-orbital basis set at a fraction of its computational costs. The calculation of isotropic molecular polarizabilities is robust for a data set of more than 80 000 molecules. We present furthermore a generally applicable van der Waals radius model that is rooted on atomic static polarizabilites. Efficiency tests show that such radii can even be calculated for small- to medium-size proteins where the largest system (SARS-CoV-2 spike protein) has 42 539 atoms. Following the work of Domingo-Alemenara et al. [Domingo-Alemenara et al., Nat. Commun., 2019, 10, 5811], we present computational predictions for retention times for different chromatographic methods and describe how physicochemical features improve the predictive power of machine-learning models that otherwise only rely on two-dimensional features like molecular fingerprints. Additionally, we developed an internal benchmark set of experimental super-critical fluid chromatography retention times. For those methods, improvements of up to 10.6% are obtained when combining molecular fingerprints with physicochemical descriptors. Shapley additive explanation values show furthermore that the physical nature of the applied features can be retained within the final machine-learning models. We generally recommend the kallisto framework as a robust, low-cost, and physically motivated featurizer for upcoming state-of-the-art machine-learning studies.

Graphical abstract: An open-source framework for fast-yet-accurate calculation of quantum mechanical features

Supplementary files

Article information

Article type
Paper
Submitted
09 Mar 2022
Accepted
14 Apr 2022
First published
14 Apr 2022

Phys. Chem. Chem. Phys., 2022,24, 10599-10610

An open-source framework for fast-yet-accurate calculation of quantum mechanical features

E. Caldeweyher, C. Bauer and A. S. Tehrani, Phys. Chem. Chem. Phys., 2022, 24, 10599 DOI: 10.1039/D2CP01165D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements