Issue 24, 2022

Isotherm model for moisture-controlled CO2 sorption

Abstract

Moisture-controlled sorption of CO2, the basis for moisture-swing CO2 capture from air, is a novel phenomenon observed in strong-base anion exchange materials. Prior research has shown that Langmuir isotherms provide an approximate fit to moisture-controlled CO2 sorption isotherm data. However, this fit still lacks a governing equation derived from an analytic model. In this paper, we derive an analytic form for an isotherm equation from a bottom-up approach, starting with a fundamental theory for an alkali liquid. In the range of interest relevant to CO2 capture from air, an isotherm equation for an alkali liquid reduces to a simple analytic form with a single parameter, Keq. In the limit Keq ≫ 1, a 2nd order approximation simplifies to a Langmuir isotherm that, however, deviates from experimental data. The isotherm theory for an alkali liquid has been generalized to a strong-base anion exchange material. In a strong-base anion exchange material, water concentration inside a sorbent, [H2O], is not large enough to be regarded as constant, which allows us to extend Keq to Keq(AEM)eff = Keq(AEM) × [H2O]n according to the law of mass action. The final isotherm formula has been validated by experimental data from the literature. For a moisture-controlled CO2 sorbent, Keq(AEM)eff varies significantly with moisture content of the sorbent. Depending on moisture level, the observed Keq(AEM)eff in a specific sorbent ranges from a few times to a few thousand times the value of Keq of a 2 mol L−1 alkali liquid.

Graphical abstract: Isotherm model for moisture-controlled CO2 sorption

Supplementary files

Article information

Article type
Paper
Submitted
08 Mar 2022
Accepted
21 May 2022
First published
26 May 2022

Phys. Chem. Chem. Phys., 2022,24, 14763-14771

Author version available

Isotherm model for moisture-controlled CO2 sorption

Y. Kaneko and K. S. Lackner, Phys. Chem. Chem. Phys., 2022, 24, 14763 DOI: 10.1039/D2CP01131J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements