Issue 16, 2022

Theoretical study of the O(3P) + SiH4 reaction: global potential energy surface, kinetics and dynamics study

Abstract

In order to understand the gas-phase hydrogen abstraction reaction between O(3P) and silane we began by developing the first full-dimensional analytical potential energy surface, named PES-2022. It is basically a valence bond function augmented with molecular mechanic terms describing in an intuitive way stretching and bending nuclei motions, and it is fitted to high level ab initio calculations. The surface presents continuous and smooth behaviour, with analytical first energy derivatives, on which the hydrogen atoms in silane are permutationally symmetric. Based on PES-2022, a kinetics study was performed using the variational transition-state theory with multidimensional tunnelling corrections in the temperature range of 300–1000 K. We observed that experimental and theoretical results show widely spread results, both in absolute value and temperature dependence, possibly because they include the reactivity from both O(3P) and O(1D) electronic states, which present different mechanisms and multiple channels. When the comparison is performed on the same footing, O(3P) + SiH4 → HO + SiH3, the present results agree with Ding and Marshall's experiments and with Zhang et al.'s theoretical rate constants. The kinetic isotope effects (KIEs) reproduced the only experimental value, improving previous theoretical results. Finally, a dynamics study was performed on PES-2022 using quasi-classical trajectory calculations under two different initial conditions, at fixed room temperature and at a fixed collision energy of 8.0 kcal mol−1. In the first case, the available energy deposited as HO(v) vibration was 47%, with population inversion, P(v = 0)/P(v = 1) = 11/89%, reproducing the experimental evidence. In the second case, the experimental product translational distribution was reasonably simulated, while the angular product distribution presented opposite behaviour, backward versus forward. On analysing this discrepancy, we found that while in the present work the O(3P) + SiH4 reaction was reported, in the experiment both O(3P) and O(1D) electronic states are reported. So, the comparison was not performed on the same footing. In sum, agreement of the present results with experiments permits us to be reasonably optimistic about the quality and accuracy of the new PES, and at the same time to highlight the fact that theory/experiment comparisons must be performed on the same footing.

Graphical abstract: Theoretical study of the O(3P) + SiH4 reaction: global potential energy surface, kinetics and dynamics study

Supplementary files

Article information

Article type
Paper
Submitted
31 Jan 2022
Accepted
01 Apr 2022
First published
01 Apr 2022

Phys. Chem. Chem. Phys., 2022,24, 9735-9742

Theoretical study of the O(3P) + SiH4 reaction: global potential energy surface, kinetics and dynamics study

C. Rangel and J. Espinosa-Garcia, Phys. Chem. Chem. Phys., 2022, 24, 9735 DOI: 10.1039/D2CP00524G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements