Issue 16, 2022

Polyether-based solid electrolytes with a homogeneous polymer network: effect of the salt concentration on the Li-ion coordination structure

Abstract

We report a solid polymer electrolyte with an ideal polyether network that was synthesized by using tetra-functional poly(ethylene glycol) (TetraPEG) and lithium bis(trifluoromethanesulfonyl)amide (LiTFSA) salt. The solid TetraPEG electrolyte had few network defects (<5%) and exhibited high mechanical toughness by enduring approximately 11-fold elongation at a 1 : 10 ratio of Li salt to O atoms of PEG (Li/OPEG). We found that the mechanical properties strongly depend on the Li/OPEG ratio, which mainly contributes to the density of crosslinking points in the electrolyte. Raman spectroscopy and high-energy X-ray total scattering were used with all-atom molecular dynamics simulations to visualize the structural effects of Li-ion coordination in the TetraPEG network. At lower salt contents (Li/OPEG = 1 : 10), Li ions were found to preferentially coordinate with OPEG atoms rather than the TFSA anions to form crown ether-like Li+–PEG complexes as ion pair–free species. With increasing salt content, the TFSA anions partially coordinated with Li ions through O atoms of TFSA (OTFSA) to afford contact ion pairs surrounded by both OPEG and OTFSA atoms. Finally, the ion pairing enhanced mononuclear ion pairs as well as multinuclear ionic aggregates when more Li salt was added. This structural change in the Li-ion complexes was directly reflected by the ion-conducting properties of the electrolyte. The TetraPEG electrolyte composed of the ion pair–free Li+ species (Li/OPEG = 1 : 10) exhibited higher ionic conductivity, and the conductivity gradually decreased with increasing salt content because of extensive ion pairing for both mononuclear contact ion pairs and multinuclear aggregates. Regarding the electrochemical properties, the optimum electrolyte composition to realize a reversible Li deposition/dissolution reaction for a negative electrode was found to be Li/OPEG = 1 : 4.

Graphical abstract: Polyether-based solid electrolytes with a homogeneous polymer network: effect of the salt concentration on the Li-ion coordination structure

Supplementary files

Article information

Article type
Paper
Submitted
23 Nov 2021
Accepted
04 Apr 2022
First published
04 Apr 2022

Phys. Chem. Chem. Phys., 2022,24, 9626-9633

Polyether-based solid electrolytes with a homogeneous polymer network: effect of the salt concentration on the Li-ion coordination structure

N. Ikeda, A. Ishikawa and K. Fujii, Phys. Chem. Chem. Phys., 2022, 24, 9626 DOI: 10.1039/D1CP05351E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements