Issue 31, 2022

Os(ii) complexes for catalytic anticancer therapy: recent update

Abstract

The recent dramatic enhancement in cancer-related mortality and the drawbacks (side effects and resistance) of Pt-based first-generation chemotherapeutics have escalated the need for new cancer medicines with unique anticancer activities for better human life. To overcome the demerits of Pt-based cancer drugs, the concept of catalytic anticancer agents has recently been presented in the field of anticancer metallodrug development research. Many intracellular transformations in cancer cells are catalyzed by metal complexes, including pyruvate reduction to lactate, NAD(P)+ reduction to NAD(P)H and vice versa, and the conversion of 3O2 to reactive oxygen species (ROS). These artificial in-cell changes with non-toxic and catalytic dosages of metal complexes have been shown to disrupt several essential intracellular processes which ultimately cause cell death. This new approach could develop potent next-generation catalytic anticancer drugs. In this context, recently, several 16/18 electron Os(II)-based complexes have shown promising catalytic anticancer activities with unique anticancer mechanisms. Herein, we have delineated the catalytic anticancer activity of Os(II) complexes from a critical viewpoint. These catalysts are reported to induce the in-cell catalytic transfer hydrogenation of pyruvate and important quinones to create metabolic disorder and photocatalytic ROS generation for oxidative stress generation in cancer cells. Overall, these Os(II) catalysts have the potential to be novel catalytic cancer drugs with new anticancer mechanisms.

Graphical abstract: Os(ii) complexes for catalytic anticancer therapy: recent update

Article information

Article type
Feature Article
Submitted
18 Jan 2022
Accepted
17 Mar 2022
First published
17 Mar 2022

Chem. Commun., 2022,58, 4825-4836

Os(II) complexes for catalytic anticancer therapy: recent update

R. Kushwaha, A. Kumar, S. Saha, S. Bajpai, A. K. Yadav and S. Banerjee, Chem. Commun., 2022, 58, 4825 DOI: 10.1039/D2CC00341D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements