Issue 2, 2022

Planar organization of airway epithelial cell morphology using hydrogel grooves during ciliogenesis fails to induce ciliary alignment

Abstract

Topographical cues are known to influence cell organization both in native tissues and in vitro. In the trachea, the matrix beneath the epithelial lining is composed of collagen fibres that run along the long axis of the airway. Previous studies have shown that grooved topography can induce morphological and cytoskeletal alignment in epithelial cell lines. In the present work we assessed the impact of substrate topography on the organization of primary human tracheal epithelial cells (HTECs) and human induced pluripotent stem cell (hiPSC)-derived airway progenitors and the resulting alignment of cilia after maturation of the airway cells under Air–Liquid-Interface (ALI) culture. Grooves with optimized dimensions were imprinted into collagen vitrigel membranes (CVM) to produce gel inserts for ALI culture. Grooved CVM substrates induced cell alignment in HTECs and hiPSC airway progenitors in submerged culture. Further, both cell types were able to terminally differentiate into a multi-ciliated epithelium on both flat and groove CVM substrates. When exposed to ALI conditions, HTECs lost alignment after 14 days. Meanwhile, hiPSC-derived airway progenitors maintained their alignment throughout 31 days of ALI culture. Interestingly, neither initial alignment on the grooves, nor maintained alignment on the grooves induced alignment of cilia basal bodies, an indication of the direction of ciliary beating direction in the airway cells. Planar organization of airway cells during or prior to ciliogenesis therefore does not appear to be a feasible strategy to control cilia organization and subsequent airway epithelial function and additional cues are likely necessary to produce cilia alignment.

Graphical abstract: Planar organization of airway epithelial cell morphology using hydrogel grooves during ciliogenesis fails to induce ciliary alignment

Supplementary files

Article information

Article type
Paper
Submitted
23 Aug 2021
Accepted
01 Dec 2021
First published
03 Dec 2021

Biomater. Sci., 2022,10, 396-409

Planar organization of airway epithelial cell morphology using hydrogel grooves during ciliogenesis fails to induce ciliary alignment

R. Varma, J. Poon, Z. Liao, J. S. Aitchison, T. K. Waddell, G. Karoubi and A. P. McGuigan, Biomater. Sci., 2022, 10, 396 DOI: 10.1039/D1BM01327K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements