Issue 14, 2022

Portable and sensitive detection of cancer cells via a handheld luminometer

Abstract

Portable detection of cancer cells is important for early-stage diagnostic applications and prognosis of cancer. Herein, a simple and sensitive chemiluminescence method was proposed for portable detection of cancer cells via a handheld luminometer. It is based on the cancer cell triggered cyclic strand displacement reaction (SDR) for signal amplification. Cancer cells, CCRF-CEM, bind to their aptamer and release the trigger DNA (TDNA) of SDR. The TDNA initiates the cyclic SDR between magnetic bead modified hairpin DNA 1 (MB-H1) and HRP-tagged hairpin DNA 2 (HRP-H2), resulting in an enrichment of HRP onto the surface of magnetic beads by forming H1/H2 duplexes. HRP catalyzed luminol/H2O2/PIP solution to produce a strong chemiluminescence (CL) signal. CCRF-CEM cells were sensitively detected by combining magnetic enrichment with the signal amplification of SDR. The CL intensity showed an excellent linear relationship with the number of CCRF-CEM cells in the range of 100 to 5 × 104 cells per mL. The detection limit was as low as 85 cells per mL. Therefore, it offers a sensitive, cheap and portable method for the chemiluminescence detection of cancer cells and provides a new option for the early diagnosis of cancers.

Graphical abstract: Portable and sensitive detection of cancer cells via a handheld luminometer

Supplementary files

Article information

Article type
Paper
Submitted
19 Apr 2022
Accepted
25 May 2022
First published
21 Jun 2022

Analyst, 2022,147, 3219-3224

Portable and sensitive detection of cancer cells via a handheld luminometer

J. Lei, L. Shi, W. Liu, B. Li and Y. Jin, Analyst, 2022, 147, 3219 DOI: 10.1039/D2AN00666A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements