Issue 9, 2021

Comment on “investigation of dielectric constants of water in a nano-confined pore” by H. Zhu, F. Yang, Y. Zhu, A. Li, W. He, J. Huang and G. Li, RSC Adv., 2020, 10, 8628

Abstract

Zhu et al. recently reported the spatially resolved dielectric profile and value of the average static dielectric constant of water confined inside a silica nanopore. However, the authors neglected the inherent anisotropy and non-local nature of the dielectric response under confinement. Neglect of these important issues produces erroneous results and vastly underestimates the average values. We demonstrate the correct way to incorporate the anisotropy and to obtain the average dielectric constant of cylindrically nanoconfined dipolar fluids. Use of the correct theoretical formalism expectedly shows convergence of the calculated dielectric response to the bulk value with increasing the nanopore size. On the contrary, the equation used by Zhu et al. fails to exhibit the convergence of the same. Instead, decreases as the nanopore size is gradually increased.

Graphical abstract: Comment on “investigation of dielectric constants of water in a nano-confined pore” by H. Zhu, F. Yang, Y. Zhu, A. Li, W. He, J. Huang and G. Li, RSC Adv., 2020, 10, 8628

Associated articles

Article information

Article type
Comment
Submitted
24 Mar 2020
Accepted
14 Jul 2020
First published
28 Jan 2021
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2021,11, 5179-5181

Comment on “investigation of dielectric constants of water in a nano-confined pore” by H. Zhu, F. Yang, Y. Zhu, A. Li, W. He, J. Huang and G. Li, RSC Adv., 2020, 10, 8628

S. Mondal and B. Bagchi, RSC Adv., 2021, 11, 5179 DOI: 10.1039/D0RA02726J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements