Issue 40, 2021

Comprehensive Raman study of orthorhombic κ/ε-Ga2O3 and the impact of rotational domains

Abstract

Gallium oxide (Ga2O3) is an ultra-wide bandgap material, which has recently attracted widespread attention for holding promising applications in power electronics and solar blind UV photodetectors, outclassing GaN or SiC in terms of a larger bandgap and higher breakdown voltages. The orthorhombic κ phase (also referred to as ε) has sparked particular interest for offering higher symmetry than β, while featuring ferroelectric behavior paired with a large predicted spontaneous polarization, paving the way to fabricating high-quality two-dimensional electron gases for application in heterostructure field effect transistors. The presently available κ phase samples are characterized by a domain structure, in which orthorhombic domains are rotated 120° against each other within the c-plane forming a pseudo-hexagonal structure, which has previously often been ascribed to ε-Ga2O3 and incorrectly been viewed as this polymorph's true crystal structure. A detailed investigation into the phonon modes of orthorhombic κ-Ga2O3 provides insights into fundamental material properties such as crystal structure and orientation as well as the vibrational symmetries of Raman active modes. We investigate the Raman active phonon modes of an MBE-grown orthorhombic κ-Ga2O3 thin film featuring the domain structure deposited on (0001)-Al2O3 by experiment and theory: Polarized micro-Raman spectroscopy measurements in conjunction with density functional perturbation theory (DFPT) calculations enable the identification of both the frequencies and vibrational symmetries of the Raman active phonons. Presenting comprehensive Raman spectra of the orthorhombic κ phase, the experimental frequencies of more than 90 Raman modes are determined and correlated with the 117 modes predicted by the calculations. Angular-resolved Raman measurements are utilized to provide an experimental verification of phonon mode symmetries. We present an analytical tool to deal with the domain structure and its effect on the obtained Raman spectra.

Graphical abstract: Comprehensive Raman study of orthorhombic κ/ε-Ga2O3 and the impact of rotational domains

Supplementary files

Article information

Article type
Paper
Submitted
27 Jul 2021
Accepted
17 Sep 2021
First published
20 Sep 2021
This article is Open Access
Creative Commons BY-NC license

J. Mater. Chem. C, 2021,9, 14175-14189

Comprehensive Raman study of orthorhombic κ/ε-Ga2O3 and the impact of rotational domains

B. M. Janzen, P. Mazzolini, R. Gillen, V. F. S. Peltason, L. P. Grote, J. Maultzsch, R. Fornari, O. Bierwagen and M. R. Wagner, J. Mater. Chem. C, 2021, 9, 14175 DOI: 10.1039/D1TC03500B

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements