Issue 17, 2021

Tailoring cysteine detection in colorimetric techniques using Co/Fe-functionalized mesoporous silica nanoparticles

Abstract

Over the past decade, there has been a dramatic increase in the number of studies focused on sensors for cysteine (Cys) as a crucial factor in physiological function and disease diagnosis. Among those sensors, nanomaterial-based peroxidase mimetics have received particular attention from researchers. This study introduces a new series of mesoporous silica nanoparticles (MSNs) incorporated with iron and cobalt (Co/Fe-MSN) with a molar ratio of Si/Fe = 10 and cobalt species at 1, 3, and 5 wt% that have great potential in the sensing application. These nanomaterial characterization was investigated by FTIR spectroscopy, SEM, TEM, XRD, and nitrogen adsorption–desorption. The peroxidase activity of these nanomaterials was studied through kinetic analysis. The findings revealed that Co/Fe-MSN (1%) showed higher peroxidatic activity than the others towards the common chromogenic substrate 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) diammonium salt. Based on the enzymatic activity of Co/Fe-MSN (1%), a colorimetric sensing platform was designed to detect H2O2 and Cys. The limit of detection (LOD) for H2O2 and Cys was determined to be 1.1 μM and 0.89 nM, respectively. The results indicated that the proposed enzyme mimic exhibited excellent potential as a sensor in medical diagnostics and biological systems.

Graphical abstract: Tailoring cysteine detection in colorimetric techniques using Co/Fe-functionalized mesoporous silica nanoparticles

Supplementary files

Article information

Article type
Paper
Submitted
25 Jan 2021
Accepted
07 Apr 2021
First published
26 Apr 2021

J. Mater. Chem. B, 2021,9, 3716-3726

Tailoring cysteine detection in colorimetric techniques using Co/Fe-functionalized mesoporous silica nanoparticles

M. Aghayan, A. Mahmoudi, M. R. Sazegar and F. Adhami, J. Mater. Chem. B, 2021, 9, 3716 DOI: 10.1039/D1TB00157D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements