Issue 9, 2021

A PLGA nanofiber microfluidic device for highly efficient isolation and release of different phenotypic circulating tumor cells based on dual aptamers

Abstract

The isolation of specific and sensitive circulating tumor cells (CTCs) is significant for applying them in cancer diagnosis and monitoring. In this work, dual aptamer-modified poly(lactic-co-glycolic acid) (PLGA) nanofiber-based microfluidic devices were fabricated to achieve the highly efficient capture and specific release of epithelial and mesenchymal CTCs of ovarian cancer. Dual aptamer targeting epithelial cell adhesion molecules (EpCAM) and N-cadherin proteins to improve the capture sensitivity, bovine serum albumin (BSA) to guarantee the capture purity and the nanofibers to increase the capture efficiency via synchronously and effectively capturing the epithelial and mesenchymal CTCs with good capture specificity and sensitivity from blood samples were used. We used the target cells including the ovarian cancer A2780 cells (N-cadherin-high, EpCAM-low) and OVCAR-3 cells (EpCAM-high, N-cadherin-low) to test the devices, which exhibited good capture efficiency (91% for A2780 cells, 89% for OVCAR-3 cells), release efficiency (95% for A2780 cells, 88% for OVCAR-3 cells), and sensitivity for rare cells (92% for A2780 cells, 88% for OVCAR-3 cells). Finally, the clinical blood samples of ovarian cancer patients were detected by the PLGA nanofiber-based microfluidic device, and 1 to 13 CTCs were successfully confirmed to be captured with the help of immunofluorescence staining identification. The results exhibited that the dual aptamer-modified PLGA nanofiber-based microfluidic device used as a tool for CTC capture has the potential for clinical application to guide the diagnosis, treatment, and prognosis of ovarian cancer patients.

Graphical abstract: A PLGA nanofiber microfluidic device for highly efficient isolation and release of different phenotypic circulating tumor cells based on dual aptamers

Supplementary files

Article information

Article type
Paper
Submitted
25 Dec 2020
Accepted
30 Jan 2021
First published
01 Feb 2021

J. Mater. Chem. B, 2021,9, 2212-2220

A PLGA nanofiber microfluidic device for highly efficient isolation and release of different phenotypic circulating tumor cells based on dual aptamers

Z. Wu, Y. Pan, Z. Wang, P. Ding, T. Gao, Q. Li, M. Hu, W. Zhu and R. Pei, J. Mater. Chem. B, 2021, 9, 2212 DOI: 10.1039/D0TB02988B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements