Issue 20, 2021

Charge-transfer induced multifunctional BCP:Ag complexes for semi-transparent perovskite solar cells with a record fill factor of 80.1%

Abstract

For semi-transparent perovskite solar cells (PSCs), the bombardment during the deposition of a transparent conductive oxide would inevitably damage the underlying soft materials, thereby inducing a high density of defects and creating an unfavorable band mismatch at the interface. Although interfacial buffer layers can be adopted to alleviate this bombardment damage, the device performance is still limited by the inferior fill factor (FF) due to the increased series resistance and the decreased carrier collection. In this work, a charge transfer induced 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP):Ag complex is employed to mediate the electrical contact between a C60 electron-transport layer and sputtered indium-zinc oxide (IZO) top electrode. We demonstrate that the multifunctional BCP:Ag complex can (1) reduce the electron extraction barrier by pulling up the Fermi level of BCP, (2) create beneficial gap states for electron transport, (3) serve as a hole blocking layer to suppress charge recombination, and (4) protect the C60 underlayer from the sputtering damage. As a result, the optimized electrical contact at the C60/BCP:Ag/IZO interface significantly recovered the FF of the inverted semi-transparent perovskite solar cell from 71.8% to 80.1%, yielding a device efficiency of 18.19%. By using a 23.19% efficient silicon solar cell, we also demonstrate a four-terminal tandem configuration with a total efficiency of 27.59%.

Graphical abstract: Charge-transfer induced multifunctional BCP:Ag complexes for semi-transparent perovskite solar cells with a record fill factor of 80.1%

Supplementary files

Article information

Article type
Paper
Submitted
08 Feb 2021
Accepted
17 Mar 2021
First published
18 Mar 2021

J. Mater. Chem. A, 2021,9, 12009-12018

Charge-transfer induced multifunctional BCP:Ag complexes for semi-transparent perovskite solar cells with a record fill factor of 80.1%

Z. Ying, X. Yang, J. Zheng, Y. Zhu, J. Xiu, W. Chen, C. Shou, J. Sheng, Y. Zeng, B. Yan, H. Pan, J. Ye and Z. He, J. Mater. Chem. A, 2021, 9, 12009 DOI: 10.1039/D1TA01180D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements