Jump to main content
Jump to site search

Issue 7, 2021
Previous Article Next Article

Bimetal–organic framework derived multi-heterostructured TiO2/CuxO/C nanocomposites with superior photocatalytic H2 generation performance

Author affiliations

Abstract

In situ formation of p–n heterojunctions between TiO2 and CuxO in heteroatom-doped carbon nanocomposites and their applications in photocatalytic H2 evolution were demonstrated. One-step pyrolysis of bimetal–organic-frameworks NH2-MIL-125(Ti/Cu) in steam at 700 °C forms a p–n heterojunction between TiO2 and CuxO nanoparticles. Concurrently, a phasejunction between nitrogen/carbon co-doped anatase and rutile TiO2 is formed, accompanied by the formation of CuxO heterostructures. These multi-heterostructures are embedded in N-containing and hydrophilic carboxyl functionalized carbon matrix. The optimized TiO2/CuxO/C composite multi-heterostructures offer multiple pathways for photoinduced electrons and holes migration, absorb more visible light, and provide an increased number of active sites for photocatalytic reactions. Without loading expensive noble metals, the TiO2/CuxO/C nanocomposite derived at 700 °C in steam exhibited a superior photocatalytic H2 generation activity of 3298 μmol gcat−1 h−1 under UV-Visible light, 40 times higher than that of commercial TiO2. This work offers a simple approach to fabricate novel photocatalytic nanocomposites for efficient H2 generation.

Graphical abstract: Bimetal–organic framework derived multi-heterostructured TiO2/CuxO/C nanocomposites with superior photocatalytic H2 generation performance

Back to tab navigation

Supplementary files

Article information


Submitted
06 Nov 2020
Accepted
23 Dec 2020
First published
26 Dec 2020

This article is Open Access

J. Mater. Chem. A, 2021,9, 4103-4116
Article type
Paper

Bimetal–organic framework derived multi-heterostructured TiO2/CuxO/C nanocomposites with superior photocatalytic H2 generation performance

M. Z. Hussain, B. van der Linden, Z. Yang, Q. Jia, H. Chang, R. A. Fischer, F. Kapteijn, Y. Zhu and Y. Xia, J. Mater. Chem. A, 2021, 9, 4103
DOI: 10.1039/D0TA10853G

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements