Issue 5, 2021

How oxidation state and lattice distortion influence the oxygen evolution activity in acid of iridium double perovskites

Abstract

In view of iridium's scarceness and high cost, Ir-containing catalysts for water electrolyzers should have low loadings and maximal utilization. Here, we studied low-Ir-content, highly active, double perovskites (Sr2MIrO6, M = Ni, Co, Sc and Fe) for the oxygen evolution reaction (OER) in acid combining electrochemical experiments, DFT, and advanced characterization techniques. The initial OER performance depends on Ir's oxidation state and the geometric features of IrO6 frameworks, which are tuned by the choice of M. Higher oxidation states, particularly Ir6+, enhance the OER activity: Sr2NiIrO6 and Sr2CoIrO6 display potentials of ∼1.53 V at 10 mA cm−2, comparable to the best Ir-based catalysts in the literature. However, because of their less symmetric structures, perovskites with Ir6+ are less stable, prone to surface reconstruction and their cations leach under OER conditions. These results show that improved iridium-based OER electrocatalysts in acid can be designed by balancing their activity and stability.

Graphical abstract: How oxidation state and lattice distortion influence the oxygen evolution activity in acid of iridium double perovskites

Supplementary files

Article information

Article type
Paper
Submitted
22 Oct 2020
Accepted
04 Jan 2021
First published
07 Jan 2021
This article is Open Access
Creative Commons BY-NC license

J. Mater. Chem. A, 2021,9, 2980-2990

How oxidation state and lattice distortion influence the oxygen evolution activity in acid of iridium double perovskites

M. Retuerto, L. Pascual, O. Piqué, P. Kayser, M. A. Salam, M. Mokhtar, J. A. Alonso, M. Peña, F. Calle-Vallejo and S. Rojas, J. Mater. Chem. A, 2021, 9, 2980 DOI: 10.1039/D0TA10316K

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements