Issue 44, 2021

Photochromic and photothermal hydrogels derived from natural amino acids and heteropoly acids

Abstract

A new class of supramolecular hydrogels have been designed and synthesized via the co-assembly of basic amino acids (AAs) and heteropoly acids (HPAs) under acidic conditions. The formation of gel-like samples is identified using an inverted tube method, rheology, and scanning and transmission electron microscopy. Fourier transform infrared spectroscopy reveals that the structural integrity of the HPAs is maintained during the gelation process. X-ray photoelectron spectroscopy (XPS) and proton nuclear magnetic resonance spectroscopy demonstrate that the anionic HPAs interact with both the protonated α-NH2 and the protonated side groups of the basic amino acids, initiating the preferential growth of one-dimensional nanofibers. These nanofibers bundle and entangle with each other to form extended three-dimensional network structures. The resulting AA/HPA supramolecular hydrogels show clear stereoselectivity of the basic amino acids. With the decreasing enantiomeric excess of the basic amino acids, the gelation propensity of the AA/HPA complexes is found to be depressed. The co-assembled hydrogels show the UV-responsive photochromic behaviour because of the presence of HPAs. The corresponding XPS data confirm that the photochromism of the hydrogels is attributed to the intervalence charge-transfer transition resulting from the reduction of HPAs. Interestingly, the reduced HPAs within the hydrogel matrix can absorb the near-infrared (NIR) light and exhibit photo-thermal conversion properties, which elevates the bulk temperature of the AA/HPA hydrogels and induces the gel-to-sol transition. This study unveils that HPAs have unique capacity to promote the gelation of basic amino acids for the construction of supramolecular soft materials with functional features.

Graphical abstract: Photochromic and photothermal hydrogels derived from natural amino acids and heteropoly acids

Supplementary files

Article information

Article type
Paper
Submitted
03 Sep 2021
Accepted
13 Oct 2021
First published
13 Oct 2021

Soft Matter, 2021,17, 10140-10148

Photochromic and photothermal hydrogels derived from natural amino acids and heteropoly acids

X. Wang, X. Liu, Z. Ma, C. Mu and W. Li, Soft Matter, 2021, 17, 10140 DOI: 10.1039/D1SM01272J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements