Issue 3, 2022

Shear-induced migration of confined flexible fibers

Abstract

We report an experimental study of the shear-induced migration of flexible fibers in suspensions confined between two parallel plates. Non-Brownian fiber suspensions are imaged in a rheo-microscopy setup, where the top and the bottom plates counter-rotate and create a Couette flow. Initially, the fibers are near the bottom plate due to sedimentation. Under shear, the fibers move with the flow and migrate towards the center plane between the two walls. Statistical properties of the fibers, such as the mean values of the positions, orientations, and end-to-end lengths of the fibers, are used to characterize the behaviors of the fibers. A dimensionless parameter Λeff, which compares the hydrodynamic shear stress and the fiber stiffness, is used to analyze the effective flexibility of the fibers. The observations show that the fibers that are more likely to bend exhibit faster migration. As Λeff increases (softer fibers and stronger shear stresses), the fibers tend to align in the flow direction and the motions of the fibers transition from tumbling and rolling to bending. The bending fibers drift away from the walls to the center plane. Further increasing Λeff leads to more coiled fiber shapes, and the bending is more frequent and with larger magnitudes, which leads to more rapid migration towards the center. Different behaviors of the fibers are quantified with Λeff, and the structures and the dynamics of the fibers are correlated with the migration.

Graphical abstract: Shear-induced migration of confined flexible fibers

Supplementary files

Article information

Article type
Paper
Submitted
30 Aug 2021
Accepted
20 Oct 2021
First published
21 Oct 2021

Soft Matter, 2022,18, 514-525

Author version available

Shear-induced migration of confined flexible fibers

N. Xue, J. K. Nunes and H. A. Stone, Soft Matter, 2022, 18, 514 DOI: 10.1039/D1SM01256H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements