Issue 41, 2021

Tuning the charge of polyelectrolyte complex membranes prepared via aqueous phase separation

Abstract

In this work, polyelectrolyte mixing ratio is studied as a tuning parameter to control the charge, and thus the separation properties of polyelectrolyte complex (PEC) membranes prepared via Aqueous Phase Separation (APS). In this approach, various ratios of poly(sodium 4-styrenesulfonate) (PSS) and poly(diallyldimethylammonium chloride) (PDADMAC) are mixed at high salinity and the PEC-based membranes are then precipitated using low salinity coagulation baths. The monomeric ratio of PSS to PDADMAC is varied from 1.0 : 0.8 through to 1.0 : 1.2. Obtained membranes have an asymmetric structure and function as nanofiltration membranes with on average 1 L m−2 h−1 bar−1 pure water permeance and <400 Da molecular weight cut-off (MWCO); except for the 1.0 : 1.2 membrane, where the water permeance was much higher (>20 L m−2 h−1 bar−1) with a similarly low MWCO. For the first time, we report the formation of both negatively and positively charged PSS–PDADMAC based APS membranes, as determined by both streaming potential and salt retention measurements. We hypothesize that the salt type used in the APS process plays a key role in the observed change in membrane charge. The point where the membrane charge transitions from negative to positive is found to be between the 1.0 : 0.9 and 1.0 : 1.0 PSS : PDADMAC ratios. The polyelectrolyte ratio not only affects membrane charge, but also their mechanical properties. The 1.0 : 0.9 and 1.0 : 1.0 membranes perform the best amongst the membranes prepared in this study since they have high salt retentions (up to 90% Na2SO4 and 75% MgCl2, respectively) and better mechanical stability. The higher permeance of the more charged, and thus more swollen, 1.0 : 0.8 and 1.0 : 1.2 membranes provide a relevant new direction for the development of APS-based PEC membranes.

Graphical abstract: Tuning the charge of polyelectrolyte complex membranes prepared via aqueous phase separation

Supplementary files

Article information

Article type
Paper
Submitted
16 Aug 2021
Accepted
29 Sep 2021
First published
30 Sep 2021
This article is Open Access
Creative Commons BY license

Soft Matter, 2021,17, 9420-9427

Tuning the charge of polyelectrolyte complex membranes prepared via aqueous phase separation

E. N. Durmaz, J. D. Willott, M. M. H. Mizan and W. M. de Vos, Soft Matter, 2021, 17, 9420 DOI: 10.1039/D1SM01199E

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements