Influence of medium structure on the physicochemical properties of aging colloidal dispersions investigated using the synthetic clay LAPONITE®

Abstract

Physical aging in colloidal dispersions manifests as a reduction in kinetic freedom of the colloids. In aqueous dispersions of charged clay colloids, the role of interparticle electrostatic interactions in determining the aging dynamics has been evaluated extensively. Despite water being the dispersion medium, the influence of water structure on the physicochemical properties of aging clay dispersions has, however, not been considered before. In this work, we use LAPONITE®, a model hectorite clay mineral that acquires surface charges when dispersed in water, to study the relative contributions of dispersion medium structure and interparticle electrostatic interactions on the physicochemical properties of aging hectorite clay dispersions. The structure of the dispersion medium is modified either by incorporating dissociating/non-dissociating kosmotropic (structure-inducing) or chaotropic (structure-disrupting) molecules or by changing dispersion temperature. Photon correlation spectroscopy, rheological measurements and particle-scale imaging are employed to evaluate the physicochemical properties of the dispersions. Our experiments involving incorporation of external additives demonstrate a strong influence of dispersion medium structure on the dispersion properties when the interparticle electrostatic interactions are weak. We introduce a new temperature dependent measurement protocol, wherein the temperature of the medium is fixed before adding the clay particles, to manipulate the hydrogen bonds in the aqueous medium in the absence of external additives. Accelerated aging, observed upon raising the temperature regardless of the experimental thermal histories, is attributed to increased interparticle electrostatic interactions as in the room temperature experiments with ionic additives. Our study identifies that in the presence of weak interparticle electrostatic interactions, changes in the physicochemical properties of charged clay dispersions can be driven by manipulating hydrogen bond populations in aqueous medium.

Graphical abstract: Influence of medium structure on the physicochemical properties of aging colloidal dispersions investigated using the synthetic clay LAPONITE®

Supplementary files

Article information

Article type
Paper
Submitted
03 Jul 2021
Accepted
10 Sep 2021
First published
14 Sep 2021

Soft Matter, 2021, Advance Article

Influence of medium structure on the physicochemical properties of aging colloidal dispersions investigated using the synthetic clay LAPONITE®

C. Misra, V. T. Ranganathan and R. Bandyopadhyay, Soft Matter, 2021, Advance Article , DOI: 10.1039/D1SM00987G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements