Droplet evaporation on soft solid substrates

Abstract

Droplet evaporation on soft solid substrates is relevant to applications such as fabrication of microlenses and controlled particle deposition. Here, we develop a lubrication-theory-based model to advance fundamental understanding of the important limiting case of a planar droplet evaporating on a linear viscoelastic solid. A set of partial differential equations describing the time evolution of the liquid–air and liquid–solid interfaces is derived and solved with a finite-difference method. A disjoining-pressure/precursor-film approach is used to describe contact-line motion, and the one sided model is used to describe solvent evaporation. Parametric studies are conducted to investigate the effect of solid properties (thickness, viscosity, shear modulus, wettability) and evaporation rate on droplet dynamics. Our results indicate that softer substrates speed up droplet evaporation due to prolonged pinning of the contact line. Results from our model are able to qualitatively reproduce some key trends observed in experiments. Due to its systematic formulation, our model can readily be extended to more complex situations of interest such as evaporation of particle-laden droplets on soft solid substrates.

Graphical abstract: Droplet evaporation on soft solid substrates

Article information

Article type
Paper
Submitted
02 Jun 2021
Accepted
15 Sep 2021
First published
18 Sep 2021

Soft Matter, 2021, Advance Article

Droplet evaporation on soft solid substrates

V. Charitatos and S. Kumar, Soft Matter, 2021, Advance Article , DOI: 10.1039/D1SM00828E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements