Issue 10, 2021

Holographic characterization and tracking of colloidal dimers in the effective-sphere approximation

Abstract

An in-line hologram of a colloidal sphere can be analyzed with the Lorenz–Mie theory of light scattering to measure the sphere's three-dimensional position with nanometer-scale precision while also measuring its diameter and refractive index with part-per-thousand precision. Applying the same technique to aspherical or inhomogeneous particles yields measurements of the position, diameter and refractive index of an effective sphere that represents an average over the particle's geometry and composition. This effective-sphere interpretation has been applied successfully to porous, dimpled and coated spheres, as well as to fractal clusters of nanoparticles, all of whose inhomogeneities appear on length scales smaller than the wavelength of light. Here, we combine numerical and experimental studies to investigate effective-sphere characterization of symmetric dimers of micrometer-scale spheres, a class of aspherical objects that appear commonly in real-world dispersions. Our studies demonstrate that the effective-sphere interpretation usefully distinguishes small colloidal clusters in holographic characterization studies of monodisperse colloidal spheres. The effective-sphere estimate for a dimer's axial position closely follows the ground truth for its center of mass. Trends in the effective-sphere diameter and refractive index, furthermore, can be used to measure a dimer's three-dimensional orientation. When applied to colloidal dimers transported in a Poiseuille flow, the estimated orientation distribution is consistent with expectations for Brownian particles undergoing Jeffery orbits.

Graphical abstract: Holographic characterization and tracking of colloidal dimers in the effective-sphere approximation

Article information

Article type
Paper
Submitted
24 Dec 2020
Accepted
13 Feb 2021
First published
15 Feb 2021

Soft Matter, 2021,17, 2695-2703

Holographic characterization and tracking of colloidal dimers in the effective-sphere approximation

L. E. Altman, R. Quddus, F. C. Cheong and D. G. Grier, Soft Matter, 2021, 17, 2695 DOI: 10.1039/D0SM02262D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements