Issue 5, 2021

Physical aspects of cortical folding


The characteristically folded surface of the human brain is critical for brain function and allows for higher cognitive abilities. Recent mostly computational research advances have shown that mechanical instabilities play a crucial role during early brain development and cortical folding. However, it is difficult to investigate such mechanisms in vivo. To experimentally gain deeper insights into the physical mechanisms that underlie the development of brain shape, we use a setup of swelling polymers. We investigate the influence of cortical thickness and the stiffness ratio between cortex and subcortex on the resulting surface pattern by taking the initially smooth fetal brain geometry at week 22 into consideration. The gel specimens possess a two-layered structure accounting for gray and white matter tissue and yield complex surface morphologies that well resemble patterns in the human brain. The results are in good agreement with analytical predictions. Through the variation of cortical thickness and stiffness, it is possible to reproduce cortical malformations such as polymicrogyria and lissencephaly. The results suggest that wrinkling with subsequent transition into folding is the driving instability mechanism during brain development. In addition, the experiments provide valuable insights towards the distinction between wrinkling and creasing instabilities. Taken together, the presented swelling experiments impressively demonstrate the purely physical aspects of brain shape and constitute a valuable tool to advance our understanding of human brain development.

Graphical abstract: Physical aspects of cortical folding

Article information

Article type
16 Dec 2020
14 Jan 2021
First published
22 Jan 2021

Soft Matter, 2021,17, 1210-1222

Physical aspects of cortical folding

A. Greiner, S. Kaessmair and S. Budday, Soft Matter, 2021, 17, 1210 DOI: 10.1039/D0SM02209H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity