Issue 8, 2021

Crowded solutions of single-chain nanoparticles under shear flow

Abstract

Single-chain nanoparticles (SCNPs) are ultrasoft objects obtained through purely intramolecular cross-linking of single polymer chains. By means of computer simulations with implemented hydrodynamic interactions, we investigate for the first time the effect of the shear flow on the structural and dynamic properties of SCNPs in semidilute and concentrated solutions. We characterize the dependence of several conformational and dynamic observables on the shear rate and the concentration, obtaining a set of power-law scaling laws. The concentration has a very different effect on the shear rate dependence of the former observables in SCNPs than in simple linear chains. Whereas for the latter the scaling behaviour is marginally dependent on the concentration, two clearly different scaling regimes are found for the SCNPs below and above the overlap concentration. At fixed shear rate SCNPs and linear chains also respond very differently to crowding. Whereas, at moderate and high Weissenberg numbers the linear chains swell, the SCNPs exhibit a complex non-monotonic behaviour. We suggest that these findings are inherently related to the topological interactions preventing concatenation of the SCNPs, which lead to less interpenetration than for linear chains, and to the limitation to stretching imposed by the permanent cross-links in the SCNPs, which itself limits the ways to spatially arrange in the shear flow.

Graphical abstract: Crowded solutions of single-chain nanoparticles under shear flow

Supplementary files

Article information

Article type
Paper
Submitted
06 Nov 2020
Accepted
12 Jan 2021
First published
14 Jan 2021
This article is Open Access
Creative Commons BY-NC license

Soft Matter, 2021,17, 2223-2233

Crowded solutions of single-chain nanoparticles under shear flow

M. Formanek and A. J. Moreno, Soft Matter, 2021, 17, 2223 DOI: 10.1039/D0SM01978J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements