Issue 8, 2021

Interpenetrated biosurfactant-silk fibroin networks – a SANS study

Abstract

Silk fibroin (SF) based hydrogels have been exploited for years for their inherent biocompatibility and favorable mechanical properties which makes them interesting for biotechnology applications. In this study we investigate silk based composite hydrogels where pH-sensitive, anionic biosurfactant assemblies (sophorolipids SL-C18 : 1 and SL-C18 : 0), are employed to improve the present properties of SF. Results suggest that the presence of SL surfactant assemblies leads to faster gelling of SF by accelerating the refolding from random coil to β-sheet as shown by infrared and UV-visible spectroscopy. Small angle neutron scattering (SANS) including contrast matching studies show that SF and SL assemblies coexist in a fibrillary network that is, in the case of SL-C18 : 0, interpenetrating. The resulting overall network structure in composite gels is slightly more affected by SL-C18 : 1 than by SL-C18 : 0, whereas the structure of both SF and surfactant assemblies remains unchanged. No disassembly of SL surfactant structures is observed, which gives a new perspective on SF-surfactant interactions. The hydrophobic effect within SF is favored in the presence of SL, leading to faster refolding of SF into β-sheet conformation. The presented composite gels, being an interpenetrating network of which one compound (SL-C18 : 0) can be tweaked by pH, open an interesting option towards improved workability and stimuli responsive mechanical properties of SF based hydrogels with possible applications in controlled cell culture and tissue engineering or drug delivery. The presented SANS analysis approach has the potential to be expanded to other protein-surfactant systems and composite hydrogels.

Graphical abstract: Interpenetrated biosurfactant-silk fibroin networks – a SANS study

Supplementary files

Article information

Article type
Paper
Submitted
20 Oct 2020
Accepted
17 Jan 2021
First published
19 Jan 2021

Soft Matter, 2021,17, 2302-2314

Interpenetrated biosurfactant-silk fibroin networks – a SANS study

A. Lassenberger, A. Martel, L. Porcar and N. Baccile, Soft Matter, 2021, 17, 2302 DOI: 10.1039/D0SM01869D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements